Author Disambiguation using Knowledge Graph Embeddings with Literals

Related tags

Deep Learningand-kge
Overview

Author Name Disambiguation with Knowledge Graph Embeddings using Literals

This is the repository for the master thesis project on Knowledge Graph Embeddings for Author Name Disambiguation presented by Cristian Santini at Digital Humanities and Digital Knowledge - University of Bologna, with the collaboration of Information Service Engineering - FIZ Karlsruhe, in a.y. 2020/2021.

Datasets

This repository contains notebooks and scripts used for a research on Author Name Disambiguation using Knowledge Graph Embeddings (KGEs) with literals. Due to the unavailability of an established benchmark for evaluating our approach, we extracted two Knowledge Graphs (KGs) from the following publicly available resources: 1) a triplestore available on Zenodo [1] covering information about the journal Scientometrics and modelled according to the OpenCitations Data Model and 2) a publicly available benchmark for author disambiguation available at this link by AMiner.
The Knowledge Graphs extracted are available on Zenodo as OpenCitations-782K [2] and AMiner-534K [3]. Each dataset is organized as a collection of RDF triples stored in TSV format. Literal triples are stored separately in order to train multimodal Knowledge Graph Embedding models.
Each dataset contains a JSON file called and_eval.json which contains a list of publications in the scholarly KGs labelled for evaluating AND algorithms. For the evaluation, while for AMiner-534K the set of publications was already manually annotated by a team of experts, for OC-782K we used the ORCID iDs associated with the authors in the triplestore in order to create an evaluation dataset.

PyKEEN extension

The pykeen-extension directory contains extension files compatible with PyKEEN (Release: v1.4.0.). In this directory we implemented some extensions of the LiteralE model [4] which allow to train multimodal knowledge graph embeddings by also using textual information contained in entity descriptions. Details about the models and on how to install the extension files are available in this README.md file.
The extended library provides an implementation of the following models:

  • DistMultText: an extension of the DistMult model [5] for training KGEs by using entity descriptions attached to entities.
  • ComplExText: an extension of the ComplEx model [6] which allows to train KGEs by using information coming from short text descriptions attached to entities.
  • DistMult_gate_text: an extension of the DistMult model which allows to train KGEs by using information coming from short text descriptions and numeric value associated with entities in KGs.
    Entity descriptions are encoded by using SPECTER [7], a BERT language model for scientific documents.

Code

Scripts used in our research are available in the src directory. The disambiguation.py file in the src/disambiguation folder contains the functions that we developed for carrying author name disambiguation by using knowledge graph embeddings. More specifically it contains:

  • the do_blocking() function, which is used to preliminarily group the authors in the KG into different sub-sets by means of their last name and first initial,
  • the cluster_KGEs() function, which takes as input the output of the do_blocking function and disambiguates the authors by means of Knowledge Graph Embeddings and Hierarchical Agglomerative Clustering.
  • the evaluation functions that we used in our experiments. The src folder also contains the various scripts used for extracting the scholarly KGs from the original sources and creating an evaluation dataset for AND.

Results

Knowledge Graph Embedding Evaluation

For evaluating the quality of our KGE models in representing the components of the studied KGs, OpenCitations-782K and AMiner-534K, we used entity prediction, one of the most common KG-completion tasks. In our experiments, we compared three architectures:

  • A DistMult model trained with only structural triples, i.e. triples connecting just two entities.
  • A DistMultText model which was trained by using titles of scholarly resources, i.e. journals and publications, along with structural triples.
  • A DistMult_gate_text model which was trained using titles and publication dates of scholarly resources in order to leverage the representations of the entities associated with them.
    Hyper-parameters were obtained by doing hyper-parameter optimization with PyKEEN. Details about the configuration files are available in the kge-evaluation folder.

The following table shows the results of our experiments for OC-782K.

Model MR MRR [email protected] [email protected] [email protected] [email protected]
DistMult 59901 0.3570 0.3157 0.3812 0.402 0.4267
DistMultText 60495 0.3568 0.3158 0.3809 0.4013 0.4252
DistMult_gate_text 61812 0.3534 0.3130 0.3767 0.3971 0.4218

The following table shows the results of our experiments for AMiner-534K.

Model MR MRR [email protected] [email protected] [email protected] [email protected]
DistMult 3585 0.3285 0.1938 0.3996 0.4911 0.5940
DistMultText 3474 0.3443 0.2139 0.4123 0.5014 0.6019
DistMult_gate_text 3560 0.3452 0.2163 0.4123 0.5009 0.6028

Author Name Disambiguation

We compared our architecture for Author Name Disambiguation (AND) for KGs with a simple Rule-based method inspired by Caron and Van Eck [8] on OC-782K and with other state-of-the-art graph embedding models on the AMiner benchmark (results taken from [9]). The results are reported below.

Model Precision Recall F1
Caron & Van Eck [8] 84.66 50.20 63.03
DistMult 91.71 67.11 77.50
DistMultText 89.63 66.98 76.67
DistMult_gate_text 82.76 67.59 74.40

Model Precision Recall F1
Zhang and Al Hasan [10] 70.63 59.53 62.81
Zhang et Al. [9] 77.96 63.03 67.79
DistMult 78.36 59.68 63.36
DistMultText 77.24 61.21 64.18
DistMult_gate_text 77.62 59.91 63.07

References

[1] Massari, Arcangelo. (2021). Bibliographic dataset based on Scientometrics, containing provenance information compliant with the OpenCitations Data Model and non disambigued authors (1.0.0) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.5151264

[2] Santini, Cristian, Alam, Mehwish, Gesese, Genet Asefa, Peroni, Silvio, Gangemi, Aldo, & Sack, Harald. (2021). OC-782K: Knowledge Graph of "Scientometrics" modelled according to the OpenCitations Data Model [Data set]. Zenodo. https://doi.org/10.5281/zenodo.5675787

[3] Santini, Cristian, Alam, Mehwish, Gesese. Genet Asefa, Peroni, Silvio, Gangemi, Aldo, & Sack, Harald. (2021). AMiner-534K: Knowledge Graph of AMiner benchmark for Author Name Disambiguation [Data set]. Zenodo. https://doi.org/10.5281/zenodo.5675801

[4] Kristiadi A., Khan M.A., Lukovnikov D., Lehmann J., Fischer A. (2019) Incorporating Literals into Knowledge Graph Embeddings. In: Ghidini C. et al. (eds) The Semantic Web – ISWC 2019. ISWC 2019. Lecture Notes in Computer Science, vol 11778. Springer, Cham. https://doi.org/10.1007/978-3-030-30793-6_20.

[5] Yang, B., Yih, W., He, X., Gao, J., & Deng, L. (2015). Embedding Entities and Relations for Learning and Inference in Knowledge Bases. ArXiv:1412.6575 [Cs]. http://arxiv.org/abs/1412.6575

[6] Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., & Bouchard, G. (2016). Complex Embeddings for Simple Link Prediction. ArXiv:1606.06357 [Cs, Stat]. http://arxiv.org/abs/1606.06357

[7] Cohan, A., Feldman, S., Beltagy, I., Downey, D., & Weld, D. S. (2020). SPECTER: Document-level Representation Learning using Citation-informed Transformers. ArXiv:2004.07180 [Cs]. http://arxiv.org/abs/2004.07180

[8] Caron, E., & van Eck, N.-J. (2014). Large scale author name disambiguation using rule-based scoring and clustering: International conference on science and technology indicators. Proceedings of the Science and Technology Indicators Conference 2014, 79–86. http://sti2014.cwts.nl

[9] Zhang, Y., Zhang, F., Yao, P., & Tang, J. (2018). Name Disambiguation in AMiner: Clustering, Maintenance, and Human in the Loop. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 1002–1011. https://doi.org/10.1145/3219819.3219859

[10] Zhang, B., & Al Hasan, M. (2017). Name Disambiguation in Anonymized Graphs using Network Embedding. Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, 1239–1248. https://doi.org/10.1145/3132847.3132873

Acknowledgments

The software and data here available are the result of a master thesis carried in collaboration between the FICLIT department of the University of Bologna and the research department FIZ - Information Service Engineering (ISE) of the Karlsruhe Institute of Technology (KIT). The thesis has been supervised by Prof. Aldo Gangemi and Prof. Silvio Peroni from the University of Bologna, and Prof. Harald Sack, Dr. Mehwish Alam and Genet Asefa Gesese from FIZ-ISE.

A tensorflow model that predicts if the image is of a cat or of a dog.

Quick intro Hello and thank you for your interest in my project! This is the backend part of a two-repo application. The other part can be found here

Tudor Matei 0 Mar 08, 2022
CTC segmentation python package

CTC segmentation CTC segmentation can be used to find utterances alignments within large audio files. This repository contains the ctc-segmentation py

Ludwig Kürzinger 217 Jan 04, 2023
MLP-Numpy - A simple modular implementation of Multi Layer Perceptron in pure Numpy.

MLP-Numpy A simple modular implementation of Multi Layer Perceptron in pure Numpy. I used the Iris dataset from scikit-learn library for the experimen

Soroush Omranpour 1 Jan 01, 2022
Satellite labelling tool for manual labelling of storm top features such as overshooting tops, above-anvil plumes, cold U/Vs, rings etc.

Satellite labelling tool About this app A tool for manual labelling of storm top features such as overshooting tops, above-anvil plumes, cold U/Vs, ri

Czech Hydrometeorological Institute - Satellite Department 10 Sep 14, 2022
DANet for Tabular data classification/ regression.

Deep Abstract Networks A PyTorch code implemented for the submission DANets: Deep Abstract Networks for Tabular Data Classification and Regression. Do

Ronnie Rocket 55 Sep 14, 2022
Code for Talk-to-Edit (ICCV2021). Paper: Talk-to-Edit: Fine-Grained Facial Editing via Dialog.

Talk-to-Edit (ICCV2021) This repository contains the implementation of the following paper: Talk-to-Edit: Fine-Grained Facial Editing via Dialog Yumin

Yuming Jiang 221 Jan 07, 2023
Language-Driven Semantic Segmentation

Language-driven Semantic Segmentation (LSeg) The repo contains official PyTorch Implementation of paper Language-driven Semantic Segmentation. Authors

Intelligent Systems Lab Org 416 Jan 03, 2023
X-VLM: Multi-Grained Vision Language Pre-Training

X-VLM: learning multi-grained vision language alignments Multi-Grained Vision Language Pre-Training: Aligning Texts with Visual Concepts. Yan Zeng, Xi

Yan Zeng 286 Dec 23, 2022
[ICLR2021] Unlearnable Examples: Making Personal Data Unexploitable

Unlearnable Examples Code for ICLR2021 Spotlight Paper "Unlearnable Examples: Making Personal Data Unexploitable " by Hanxun Huang, Xingjun Ma, Sarah

Hanxun Huang 98 Dec 07, 2022
This program was designed to detect whether someone is wearing a facemask through a live video stream.

This program was designed to detect whether someone is wearing a facemask through a live video stream. A custom lightweight CNN trained with TensorFlow on a public dataset provided by Kaggle is used

0 Apr 02, 2022
This is a re-implementation of TransGAN: Two Pure Transformers Can Make One Strong GAN (CVPR 2021) in PyTorch.

TransGAN: Two Transformers Can Make One Strong GAN [YouTube Video] Paper Authors: Yifan Jiang, Shiyu Chang, Zhangyang Wang CVPR 2021 This is re-implem

Ahmet Sarigun 79 Jan 05, 2023
TensorFlow (Python) implementation of DeepTCN model for multivariate time series forecasting.

DeepTCN TensorFlow TensorFlow (Python) implementation of multivariate time series forecasting model introduced in Chen, Y., Kang, Y., Chen, Y., & Wang

Flavia Giammarino 21 Dec 19, 2022
official implemntation for "Contrastive Learning with Stronger Augmentations"

CLSA CLSA is a self-supervised learning methods which focused on the pattern learning from strong augmentations. Copyright (C) 2020 Xiao Wang, Guo-Jun

Lab for MAchine Perception and LEarning (MAPLE) 47 Nov 29, 2022
Implementation of CSRL from the AAAI2022 paper: Constraint Sampling Reinforcement Learning: Incorporating Expertise For Faster Learning

CSRL Implementation of CSRL from the AAAI2022 paper: Constraint Sampling Reinforcement Learning: Incorporating Expertise For Faster Learning Python: 3

4 Apr 14, 2022
Unsupervised Foreground Extraction via Deep Region Competition

Unsupervised Foreground Extraction via Deep Region Competition [Paper] [Code] The official code repository for NeurIPS 2021 paper "Unsupervised Foregr

28 Nov 06, 2022
Code for the Convolutional Vision Transformer (ConViT)

ConViT : Vision Transformers with Convolutional Inductive Biases This repository contains PyTorch code for ConViT. It builds on code from the Data-Eff

Facebook Research 418 Jan 06, 2023
Supporting code for short YouTube series Neural Networks Demystified.

Neural Networks Demystified Supporting iPython notebooks for the YouTube Series Neural Networks Demystified. I've included formulas, code, and the tex

Stephen 1.3k Dec 23, 2022
This is the implementation of the paper "Self-supervised Outdoor Scene Relighting"

Self-supervised Outdoor Scene Relighting This is the implementation of the paper "Self-supervised Outdoor Scene Relighting". The model is implemented

Ye Yu 24 Dec 17, 2022
Learning Modified Indicator Functions for Surface Reconstruction

Learning Modified Indicator Functions for Surface Reconstruction In this work, we propose a learning-based approach for implicit surface reconstructio

4 Apr 18, 2022
This is code to fit per-pixel environment map with spherical Gaussian lobes, using LBFGS optimization

Spherical Gaussian Optimization This is code to fit per-pixel environment map with spherical Gaussian lobes, using LBFGS optimization. This code has b

41 Dec 14, 2022