Official PyTorch implementation of "Preemptive Image Robustification for Protecting Users against Man-in-the-Middle Adversarial Attacks" (AAAI 2022)

Overview

Preemptive Image Robustification for Protecting Users against Man-in-the-Middle Adversarial Attacks

DOI License: MIT

This is the code for reproducing the results of the paper Preemptive Image Robustification for Protecting Users against Man-in-the-Middle Adversarial Attacks accepted at AAAI 2022.

Requirements

All Python packages required are listed in requirements.txt. To install these packages, run the following commands.

conda create -n preempt-robust python=3.7
conda activate preempt-robust
pip install -r requirements.txt

Preparing CIFAR-10 data

Download the CIFAR-10 dataset from https://www.cs.toronto.edu/~kriz/cifar.html and place it a directory ./data.

Pretrained models

We provide pre-trained checkpoints for adversarially trained model and preemptively robust model.

  • adv_l2: ℓ2 adversarially trained model with early stopping
  • adv_linf: ℓ adversarially trained model with early stopping
  • preempt_robust_l2: ℓ2 preemptively robust model
  • preempt_robust_linf: ℓ preemptively robust model

We also provide a pre-trained checkpoint for a model with randomized smoothing.

  • gaussian_0.1: model trained with additive Gaussian noises (σ = 0.1)

Shell scripts for downloading these checkpoint are located in ./checkpoints/cifar10/wideresent/[train_type]/download.sh. You can run each script to download a checkpoint named ckpt.pt. To download all the checkpoints, run download_all_ckpts.sh. You can delete all the checkpoints by running delete_all_ckpts.sh.

Preemptively robust training

To train preemptively robust classifiers, run the following commands.

1. ℓ2 threat model, ε = δ = 0.5

python train.py --config ./configs/cifar10_l2_model.yaml

2. ℓ threat model, ε = δ = 8/255

python train.py --config ./configs/cifar10_linf_model.yaml

Preemptive robustification and reconstruction algorithms

To generate preepmtive roobust images and their reconstruction, run the following commands. You can specify the classifier used for generating preemptively robust images by changing train_type in each yaml file.

1. ℓ2 threat model, ε = δ = 0.5

python robustify.py --config ./configs/cifar10_l2.yaml
python reconstruct.py --config ./configs/cifar10_l2.yaml

2. ℓ threat model, ε = δ = 8/255

python robustify.py --config ./configs/cifar10_linf.yaml
python reconstruct.py --config ./configs/cifar10_linf.yaml

3. ℓ2 threat model, smoothed network, ε = δ = 0.5

python robustify.py --config ./configs/cifar10_l2_rand.yaml
python reconstruct.py --config ./configs/cifar10_l2_rand.yaml

Grey-box attacks on preemptively robustified images

To conduct grey-box attacks on preemptively robustified images, run the following commands. You can specify attack type by changing attack_type_eval in each yaml file.

1. ℓ2 threat model, ε = δ = 0.5

python attack_grey_box.py --config ./configs/cifar10_l2.yaml

2. ℓ threat model, ε = δ = 8/255

python attack_grey_box.py --config ./configs/cifar10_linf.yaml

3. ℓ2 threat model, smoothed network, ε = δ = 0.5

python attack_grey_box.py --config ./configs/cifar10_l2_rand.yaml

White-box attacks on preemptively robustified images

To conduct white-box attacks on preemptively robustified images, run the following commands. You can specify attack type and its perturbation size by changing attack_type_eval and wbox_epsilon_p in each yaml file.

1. ℓ2 threat model, ε = δ = 0.5

python attack_white_box.py --config ./configs/cifar10_l2.yaml

2. ℓ threat model, ε = δ = 8/255

python attack_white_box.py --config ./configs/cifar10_linf.yaml

3. ℓ2 threat model, smoothed network, ε = δ = 0.5

python attack_white_box.py --config ./configs/cifar10_l2_rand.yaml
You might also like...
Official implementation for (Show, Attend and Distill: Knowledge Distillation via Attention-based Feature Matching, AAAI-2021)

Show, Attend and Distill: Knowledge Distillation via Attention-based Feature Matching Official pytorch implementation of "Show, Attend and Distill: Kn

Official implementation for paper Knowledge Bridging for Empathetic Dialogue Generation (AAAI 2021).
Official implementation for paper Knowledge Bridging for Empathetic Dialogue Generation (AAAI 2021).

Knowledge Bridging for Empathetic Dialogue Generation This is the official implementation for paper Knowledge Bridging for Empathetic Dialogue Generat

PyTorch Implementation for AAAI'21
PyTorch Implementation for AAAI'21 "Do Response Selection Models Really Know What's Next? Utterance Manipulation Strategies for Multi-turn Response Selection"

UMS for Multi-turn Response Selection Implements the model described in the following paper Do Response Selection Models Really Know What's Next? Utte

Scalable Attentive Sentence-Pair Modeling via Distilled Sentence Embedding (AAAI 2020) - PyTorch Implementation

Scalable Attentive Sentence-Pair Modeling via Distilled Sentence Embedding PyTorch implementation for the Scalable Attentive Sentence-Pair Modeling vi

Official Pytorch implementation of
Official Pytorch implementation of "Learning to Estimate Robust 3D Human Mesh from In-the-Wild Crowded Scenes", CVPR 2022

Learning to Estimate Robust 3D Human Mesh from In-the-Wild Crowded Scenes / 3DCrowdNet News 💪 3DCrowdNet achieves the state-of-the-art accuracy on 3D

Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data - Official PyTorch Implementation (CVPR 2022)
Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data - Official PyTorch Implementation (CVPR 2022)

Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data (CVPR 2022) Potentials of primitive shapes f

Official Pytorch implementation of Online Continual Learning on Class Incremental Blurry Task Configuration with Anytime Inference (ICLR 2022)
Official Pytorch implementation of Online Continual Learning on Class Incremental Blurry Task Configuration with Anytime Inference (ICLR 2022)

The Official Implementation of CLIB (Continual Learning for i-Blurry) Online Continual Learning on Class Incremental Blurry Task Configuration with An

Official PyTorch implementation of the paper
Official PyTorch implementation of the paper "Deep Constrained Least Squares for Blind Image Super-Resolution", CVPR 2022.

Deep Constrained Least Squares for Blind Image Super-Resolution [Paper] This is the official implementation of 'Deep Constrained Least Squares for Bli

Official pytorch implementation for Learning to Listen: Modeling Non-Deterministic Dyadic Facial Motion (CVPR 2022)
Official pytorch implementation for Learning to Listen: Modeling Non-Deterministic Dyadic Facial Motion (CVPR 2022)

Learning to Listen: Modeling Non-Deterministic Dyadic Facial Motion This repository contains a pytorch implementation of "Learning to Listen: Modeling

Releases(v1.0)
CountDown to New Year and shoot fireworks

CountDown and Shoot Fireworks About App This is an small application make you re

5 Dec 31, 2022
根据midi文件演奏“风物之诗琴”的脚本 "Windsong Lyre" auto play

Genshin-lyre-auto-play 简体中文 | English 简介 根据midi文件演奏“风物之诗琴”的脚本。由Python驱动,在此承诺, ⚠️ 项目内绝不含任何能够引起安全问题的代码。 前排提示:所有键盘在动但是原神没反应的都是因为没有管理员权限,双击run.bat或者以管理员模式

御坂17032号 386 Jan 01, 2023
Ensemble Learning Priors Driven Deep Unfolding for Scalable Snapshot Compressive Imaging [PyTorch]

Ensemble Learning Priors Driven Deep Unfolding for Scalable Snapshot Compressive Imaging [PyTorch] Abstract Snapshot compressive imaging (SCI) can rec

integirty 6 Nov 01, 2022
Deconfounding Temporal Autoencoder: Estimating Treatment Effects over Time Using Noisy Proxies

Deconfounding Temporal Autoencoder (DTA) This is a repository for the paper "Deconfounding Temporal Autoencoder: Estimating Treatment Effects over Tim

Milan Kuzmanovic 3 Feb 04, 2022
Fairness Metrics: All you need to know

Fairness Metrics: All you need to know Testing machine learning software for ethical bias has become a pressing current concern. Recent research has p

Anonymous2020 1 Jan 17, 2022
Unofficial PyTorch code for BasicVSR

Dependencies and Installation The code is based on BasicSR, Please install the BasicSR framework first. Pytorch=1.51 Training cd ./code CUDA_VISIBLE_

Long 59 Dec 06, 2022
A (PyTorch) imbalanced dataset sampler for oversampling low frequent classes and undersampling high frequent ones.

Imbalanced Dataset Sampler Introduction In many machine learning applications, we often come across datasets where some types of data may be seen more

Ming 2k Jan 08, 2023
2021-AIAC-QQ-Browser-Hyperparameter-Optimization-Rank6

2021-AIAC-QQ-Browser-Hyperparameter-Optimization-Rank6

Aigege 8 Mar 31, 2022
《Truly shift-invariant convolutional neural networks》(2021)

Truly shift-invariant convolutional neural networks [Paper] Authors: Anadi Chaman and Ivan Dokmanić Convolutional neural networks were always assumed

Anadi Chaman 46 Dec 19, 2022
Mmdetection3d Noted - MMDetection3D is an open source object detection toolbox based on PyTorch

MMDetection3D is an open source object detection toolbox based on PyTorch

Jiangjingwen 13 Jan 06, 2023
Async API for controlling Hue Lights

Hue API Async API for controlling Hue Lights Documentation: hue-api.nirantak.com Source: github.com/nirantak/hue-api Installation This is an async cli

Nirantak Raghav 4 Nov 16, 2022
Single-stage Keypoint-based Category-level Object Pose Estimation from an RGB Image

CenterPose Overview This repository is the official implementation of the paper "Single-stage Keypoint-based Category-level Object Pose Estimation fro

NVIDIA Research Projects 188 Dec 27, 2022
Categorizing comments on YouTube into different categories.

Youtube Comments Categorization This repo is for categorizing comments on a youtube video into different categories. negative (grievances, complaints,

Rhitik 5 Nov 26, 2022
PlenOctrees: NeRF-SH Training & Conversion

PlenOctrees Official Repo: NeRF-SH training and conversion This repository contains code to train NeRF-SH and to extract the PlenOctree, constituting

Alex Yu 323 Dec 29, 2022
E2e music remastering system - End-to-end Music Remastering System Using Self-supervised and Adversarial Training

End-to-end Music Remastering System This repository includes source code and pre

Junghyun (Tony) Koo 37 Dec 15, 2022
Source code for "Understanding Knowledge Integration in Language Models with Graph Convolutions"

Graph Convolution Simulator (GCS) Source code for "Understanding Knowledge Integration in Language Models with Graph Convolutions" Requirements: PyTor

yifan 10 Oct 18, 2022
Music Classification: Beyond Supervised Learning, Towards Real-world Applications

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

104 Dec 15, 2022
Python implementation of "Multi-Instance Pose Networks: Rethinking Top-Down Pose Estimation"

MIPNet: Multi-Instance Pose Networks This repository is the official pytorch python implementation of "Multi-Instance Pose Networks: Rethinking Top-Do

Rawal Khirodkar 57 Dec 12, 2022
Official code for "Decoupling Zero-Shot Semantic Segmentation"

Decoupling Zero-Shot Semantic Segmentation This is the official code for the arxiv. ZegFormer is the first framework that decouple the zero-shot seman

Jian Ding 108 Dec 30, 2022
PyTorch implementation of federated learning framework based on the acceleration of global momentum

Federated Learning with Acceleration of Global Momentum PyTorch implementation of federated learning framework based on the acceleration of global mom

0 Dec 23, 2021