The source codes for ACL 2021 paper 'BoB: BERT Over BERT for Training Persona-based Dialogue Models from Limited Personalized Data'

Overview

BoB: BERT Over BERT for Training Persona-based Dialogue Models from Limited Personalized Data

This repository provides the implementation details for the ACL 2021 main conference paper:

BoB: BERT Over BERT for Training Persona-based Dialogue Models from Limited Personalized Data. [paper]

1. Data Preparation

In this work, we carried out persona-based dialogue generation experiments under a persona-dense scenario (English PersonaChat) and a persona-sparse scenario (Chinese PersonalDialog), with the assistance of a series of auxiliary inference datasets. Here we summarize the key information of these datasets and provide the links to download these datasets if they are directly accessible.

2. How to Run

The setup.sh script contains the necessary dependencies to run this project. Simply run ./setup.sh would install these dependencies. Here we take the English PersonaChat dataset as an example to illustrate how to run the dialogue generation experiments. Generally, there are three steps, i.e., tokenization, training and inference:

  • Preprocessing

     python preprocess.py --dataset_type convai2 \
     --trainset ./data/ConvAI2/train_self_original_no_cands.txt \
     --testset ./data/ConvAI2/valid_self_original_no_cands.txt \
     --nliset ./data/ConvAI2/ \
     --encoder_model_name_or_path ./pretrained_models/bert/bert-base-uncased/ \
     --max_source_length 64 \
     --max_target_length 32
    

    We have provided some data examples (dozens of lines) at the ./data directory to show the data format. preprocess.py reads different datasets and tokenizes the raw data into a series of vocab IDs to facilitate model training. The --dataset_type could be either convai2 (for English PersonaChat) or ecdt2019 (for Chinese PersonalDialog). Finally, the tokenized data will be saved as a series of JSON files.

  • Model Training

     CUDA_VISIBLE_DEVICES=0 python bertoverbert.py --do_train \
     --encoder_model ./pretrained_models/bert/bert-base-uncased/ \
     --decoder_model ./pretrained_models/bert/bert-base-uncased/ \
     --decoder2_model ./pretrained_models/bert/bert-base-uncased/ \
     --save_model_path checkpoints/ConvAI2/bertoverbert --dataset_type convai2 \
     --dumped_token ./data/ConvAI2/convai2_tokenized/ \
     --learning_rate 7e-6 \
     --batch_size 32
    

    Here we initialize encoder and both decoders from the same downloaded BERT checkpoint. And more parameter settings could be found at bertoverbert.py.

  • Evaluations

     CUDA_VISIBLE_DEVICES=0 python bertoverbert.py --dumped_token ./data/ConvAI2/convai2_tokenized/ \
     --dataset_type convai2 \
     --encoder_model ./pretrained_models/bert/bert-base-uncased/  \
     --do_evaluation --do_predict \
     --eval_epoch 7
    

    Empirically, in the PersonaChat experiment with default hyperparameter settings, the best-performing checkpoint should be found between epoch 5 and epoch 9. If the training procedure goes fine, there should be some results like:

     Perplexity on test set is 21.037 and 7.813.
    

    where 21.037 is the ppl from the first decoder and 7.813 is the final ppl from the second decoder. And the generated results is redirected to test_result.tsv, here is a generated example from the above checkpoint:

     persona:i'm terrified of scorpions. i am employed by the us postal service. i've a german shepherd named barnaby. my father drove a car for nascar.
     query:sorry to hear that. my dad is an army soldier.
     gold:i thank him for his service.
     response_from_d1:that's cool. i'm a train driver.
     response_from_d2:that's cool. i'm a bit of a canadian who works for america.  
    

    where d1 and d2 are the two BERT decoders, respectively.

  • Computing Infrastructure:

    • The released codes were tested on NVIDIA Tesla V100 32G and NVIDIA PCIe A100 40G GPUs. Notice that with a batch_size=32, the BoB model will need at least 20Gb GPU resources for training.

MISC

  • Build upon 🤗 Transformers.

  • Bibtex:

      @inproceedings{song-etal-2021-bob,
          title = "BoB: BERT Over BERT for Training Persona-based Dialogue Models from Limited Personalized Data",
          author = "Haoyu Song, Yan Wang, Kaiyan Zhang, Wei-Nan Zhang, Ting Liu",
          booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics (ACL-2021)",
          month = "Aug",
          year = "2021",
          address = "Online",
          publisher = "Association for Computational Linguistics",
      }
      
  • Email: [email protected].

🔅 Shapash makes Machine Learning models transparent and understandable by everyone

🎉 What's new ? Version New Feature Description Tutorial 1.6.x Explainability Quality Metrics To help increase confidence in explainability methods, y

MAIF 2.1k Dec 27, 2022
Cryptocurrency Prediction with Artificial Intelligence (Deep Learning via LSTM Neural Networks)

Cryptocurrency Prediction with Artificial Intelligence (Deep Learning via LSTM Neural Networks)- Emirhan BULUT

Emirhan BULUT 102 Nov 18, 2022
Using PyTorch Perform intent classification using three different models to see which one is better for this task

Using PyTorch Perform intent classification using three different models to see which one is better for this task

Yoel Graumann 1 Feb 14, 2022
deep-prae

Deep Probabilistic Accelerated Evaluation (Deep-PrAE) Our work presents an efficient rare event simulation methodology for black box autonomy using Im

Safe AI Lab 4 Apr 17, 2021
Generating Radiology Reports via Memory-driven Transformer

R2Gen This is the implementation of Generating Radiology Reports via Memory-driven Transformer at EMNLP-2020. Citations If you use or extend our work,

CUHK-SZ NLP Group 101 Dec 13, 2022
source code for https://arxiv.org/abs/2005.11248 "Accelerating Antimicrobial Discovery with Controllable Deep Generative Models and Molecular Dynamics"

Accelerating Antimicrobial Discovery with Controllable Deep Generative Models and Molecular Dynamics This work will be published in Nature Biomedical

International Business Machines 71 Nov 15, 2022
PyTorch implementation of EigenGAN

PyTorch Implementation of EigenGAN Train python train.py [image_folder_path] --name [experiment name] Test python test.py [ckpt path] --traverse FFH

62 Nov 12, 2022
COVINS -- A Framework for Collaborative Visual-Inertial SLAM and Multi-Agent 3D Mapping

COVINS -- A Framework for Collaborative Visual-Inertial SLAM and Multi-Agent 3D Mapping Version 1.0 COVINS is an accurate, scalable, and versatile vis

ETHZ V4RL 183 Dec 27, 2022
Ensembling Off-the-shelf Models for GAN Training

Data-Efficient GANs with DiffAugment project | paper | datasets | video | slides Generated using only 100 images of Obama, grumpy cats, pandas, the Br

MIT HAN Lab 1.2k Dec 26, 2022
Compute FID scores with PyTorch.

FID score for PyTorch This is a port of the official implementation of Fréchet Inception Distance to PyTorch. See https://github.com/bioinf-jku/TTUR f

2.1k Jan 06, 2023
Single Image Random Dot Stereogram for Tensorflow

TensorFlow-SIRDS Single Image Random Dot Stereogram for Tensorflow SIRDS is a means to present 3D data in a 2D image. It allows for scientific data di

Greg Peatfield 5 Aug 10, 2022
Annealed Flow Transport Monte Carlo

Annealed Flow Transport Monte Carlo Open source implementation accompanying ICML 2021 paper by Michael Arbel*, Alexander G. D. G. Matthews* and Arnaud

DeepMind 30 Nov 21, 2022
Revisiting Global Statistics Aggregation for Improving Image Restoration

Revisiting Global Statistics Aggregation for Improving Image Restoration Xiaojie Chu, Liangyu Chen, Chengpeng Chen, Xin Lu Paper: https://arxiv.org/pd

MEGVII Research 128 Dec 24, 2022
Malware Bypass Research using Reinforcement Learning

Malware Bypass Research using Reinforcement Learning

Bobby Filar 76 Dec 26, 2022
2021-MICCAI-Progressively Normalized Self-Attention Network for Video Polyp Segmentation

2021-MICCAI-Progressively Normalized Self-Attention Network for Video Polyp Segmentation Authors: Ge-Peng Ji*, Yu-Cheng Chou*, Deng-Ping Fan, Geng Che

Ge-Peng Ji (Daniel) 85 Dec 30, 2022
U-Net for GBM

My Final Year Project(FYP) In National University of Singapore(NUS) You need Pytorch(stable 1.9.1) Both cuda version and cpu version are OK File Str

PinkR1ver 1 Oct 27, 2021
Source code of NeurIPS 2021 Paper ''Be Confident! Towards Trustworthy Graph Neural Networks via Confidence Calibration''

CaGCN This repo is for source code of NeurIPS 2021 paper "Be Confident! Towards Trustworthy Graph Neural Networks via Confidence Calibration". Paper L

6 Dec 19, 2022
A pytorch implementation of the CVPR2021 paper "VSPW: A Large-scale Dataset for Video Scene Parsing in the Wild"

VSPW: A Large-scale Dataset for Video Scene Parsing in the Wild A pytorch implementation of the CVPR2021 paper "VSPW: A Large-scale Dataset for Video

45 Nov 29, 2022
Implementation of self-attention mechanisms for general purpose. Focused on computer vision modules. Ongoing repository.

Self-attention building blocks for computer vision applications in PyTorch Implementation of self attention mechanisms for computer vision in PyTorch

AI Summer 962 Dec 23, 2022
Efficiently computes derivatives of numpy code.

Note: Autograd is still being maintained but is no longer actively developed. The main developers (Dougal Maclaurin, David Duvenaud, Matt Johnson, and

Formerly: Harvard Intelligent Probabilistic Systems Group -- Now at Princeton 6.1k Jan 08, 2023