Open-Source Toolkit for End-to-End Speech Recognition leveraging PyTorch-Lightning and Hydra.

Overview

image


OpenSpeech provides reference implementations of various ASR modeling papers and three languages recipe to perform tasks on automatic speech recognition. We aim to make ASR technology easier to use for everyone.

OpenSpeech is backed by the two powerful libraries — PyTorch-Lightning and Hydra. Various features are available in the above two libraries, including Multi-GPU and TPU training, Mixed-precision, and hierarchical configuration management.

We appreciate any kind of feedback or contribution. Feel free to proceed with small issues like bug fixes, documentation improvement. For major contributions and new features, please discuss with the collaborators in corresponding issues.

Why should I use OpenSpeech?

  1. Easy-to-experiment with the famous ASR models.
    • Supports 10+ models and is continuously updated.
    • Low barrier to entry for educators and practitioners.
    • Save time for researchers who want to conduct various experiments.
  2. Provides recipes for the most widely used languages, English, Chinese, and + Korean.
    • LibriSpeech - 1,000 hours of English dataset most widely used in ASR tasks.
    • AISHELL-1 - 170 hours of Chinese Mandarin speech corpus.
    • KsponSpeech - 1,000 hours of Korean open-domain dialogue speech.
  3. Easily customize a model or a new dataset to your needs:
    • The default hparams of the supported models are provided but can be easily adjusted.
    • Easily create a custom model by combining modules that are already provided.
    • If you want to use the new dataset, you only need to define a pl.LightingDataModule and Vocabulary classes.
  4. Audio processing
    • Representative audio features such as Spectrogram, Mel-Spectrogram, Filter-Bank, and MFCC can be used easily.
    • Provides a variety of augmentation, including SpecAugment, Noise Injection, and Audio Joining.

Why shouldn't I use OpenSpeech?

  • This library provides code for learning ASR models, but does not provide APIs by pre-trained models.
  • We do not provide pre-training mechanisms such as Wav2vec 2.0 since pre-training costs a lot of computation. Though computation optimization is very important, and this library does not provide that optimization.

Model architectures

We support all the models below. Note that, the important concepts of the model have been implemented to match, but the details of the implementation may vary.

  1. DeepSpeech2 (from Baidu Research) released with paper Deep Speech 2: End-to-End Speech Recognition in English and Mandarin, by Dario Amodei, Rishita Anubhai, Eric Battenberg, Carl Case, Jared Casper, Bryan Catanzaro, Jingdong Chen, Mike Chrzanowski, Adam Coates, Greg Diamos, Erich Elsen, Jesse Engel, Linxi Fan, Christopher Fougner, Tony Han, Awni Hannun, Billy Jun, Patrick LeGresley, Libby Lin, Sharan Narang, Andrew Ng, Sherjil Ozair, Ryan Prenger, Jonathan Raiman, Sanjeev Satheesh, David Seetapun, Shubho Sengupta, Yi Wang, Zhiqian Wang, Chong Wang, Bo Xiao, Dani Yogatama, Jun Zhan, Zhenyao Zhu.
  2. RNN-Transducer (from University of Toronto) released with paper Sequence Transduction with Recurrent Neural Networks, by Alex Graves.
  3. Listen Attend Spell (from Carnegie Mellon University and Google Brain) released with paper Listen, Attend and Spell, by William Chan, Navdeep Jaitly, Quoc V. Le, Oriol Vinyals.
  4. Location-aware attention based Listen Attend Spell (from University of Wrocław and Jacobs University and Universite de Montreal) released with paper Attention-Based Models for Speech Recognition, by Jan Chorowski, Dzmitry Bahdanau, Dmitriy Serdyuk, Kyunghyun Cho, Yoshua Bengio.
  5. Joint CTC-Attention based Listen Attend Spell (from Mitsubishi Electric Research Laboratories and Carnegie Mellon University) released with paper Joint CTC-Attention based End-to-End Speech Recognition using Multi-task Learning, by Suyoun Kim, Takaaki Hori, Shinji Watanabe.
  6. Deep CNN Encoder with Joint CTC-Attention Listen Attend Spell (from Mitsubishi Electric Research Laboratories and Massachusetts Institute of Technology and Carnegie Mellon University) released with paper Advances in Joint CTC-Attention based End-to-End Speech Recognition with a Deep CNN Encoder and RNN-LM, by Takaaki Hori, Shinji Watanabe, Yu Zhang, William Chan.
  7. Multi-head attention based Listen Attend Spell (from Google) released with paper State-of-the-art Speech Recognition With Sequence-to-Sequence Models, by Chung-Cheng Chiu, Tara N. Sainath, Yonghui Wu, Rohit Prabhavalkar, Patrick Nguyen, Zhifeng Chen, Anjuli Kannan, Ron J. Weiss, Kanishka Rao, Ekaterina Gonina, Navdeep Jaitly, Bo Li, Jan Chorowski, Michiel Bacchiani.
  8. Speech-Transformer (from University of Chinese Academy of Sciences and Institute of Automation and Chinese Academy of Sciences) released with paper Speech-Transformer: A No-Recurrence Sequence-to-Sequence Model for Speech Recognition, by Linhao Dong; Shuang Xu; Bo Xu.
  9. VGG-Transformer (from Facebook AI Research) released with paper Transformers with convolutional context for ASR, by Abdelrahman Mohamed, Dmytro Okhonko, Luke Zettlemoyer.
  10. Transformer with CTC (from NTT Communication Science Laboratories, Waseda University, Center for Language and Speech Processing, Johns Hopkins University) released with paper Improving Transformer-based End-to-End Speech Recognition with Connectionist Temporal Classification and Language Model Integration, by Shigeki Karita, Nelson Enrique Yalta Soplin, Shinji Watanabe, Marc Delcroix, Atsunori Ogawa, Tomohiro Nakatani.
  11. Joint CTC-Attention based Transformer(from NTT Corporation) released with paper Self-Distillation for Improving CTC-Transformer-based ASR Systems, by Takafumi Moriya, Tsubasa Ochiai, Shigeki Karita, Hiroshi Sato, Tomohiro Tanaka, Takanori Ashihara, Ryo Masumura, Yusuke Shinohara, Marc Delcroix.
  12. Jasper (from NVIDIA and New York University) released with paper Jasper: An End-to-End Convolutional Neural Acoustic Model, by Jason Li, Vitaly Lavrukhin, Boris Ginsburg, Ryan Leary, Oleksii Kuchaiev, Jonathan M. Cohen, Huyen Nguyen, Ravi Teja Gadde.
  13. QuartzNet (from NVIDIA and Univ. of Illinois and Univ. of Saint Petersburg) released with paper QuartzNet: Deep Automatic Speech Recognition with 1D Time-Channel Separable Convolutions, by Samuel Kriman, Stanislav Beliaev, Boris Ginsburg, Jocelyn Huang, Oleksii Kuchaiev, Vitaly Lavrukhin, Ryan Leary, Jason Li, Yang Zhang.
  14. Transformer Transducer (from Facebook AI) released with paper Transformer-Transducer: End-to-End Speech Recognition with Self-Attention, by Ching-Feng Yeh, Jay Mahadeokar, Kaustubh Kalgaonkar, Yongqiang Wang, Duc Le, Mahaveer Jain, Kjell Schubert, Christian Fuegen, Michael L. Seltzer.
  15. Conformer (from Google) released with paper Conformer: Convolution-augmented Transformer for Speech Recognition, by Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki Parmar, Yu Zhang, Jiahui Yu, Wei Han, Shibo Wang, Zhengdong Zhang, Yonghui Wu, Ruoming Pang.
  16. Conformer with CTC (from Northwestern Polytechnical University and University of Bordeaux and Johns Hopkins University and Human Dataware Lab and Kyoto University and NTT Corporation and Shanghai Jiao Tong University and Chinese Academy of Sciences) released with paper Recent Developments on ESPNET Toolkit Boosted by Conformer, by Pengcheng Guo, Florian Boyer, Xuankai Chang, Tomoki Hayashi, Yosuke Higuchi, Hirofumi Inaguma, Naoyuki Kamo, Chenda Li, Daniel Garcia-Romero, Jiatong Shi, Jing Shi, Shinji Watanabe, Kun Wei, Wangyou Zhang, Yuekai Zhang.
  17. Conformer with LSTM Decoder (from IBM Research AI) released with paper On the limit of English conversational speech recognition, by Zoltán Tüske, George Saon, Brian Kingsbury.

Create custom model

Open speech can easily create custom models using the encoder and decoder provided.
Below is an example of a custom model that combines Transformer encoder and LSTM decoder.

Get Started

We use Hydra to control all the training configurations. If you are not familiar with Hydra we recommend visiting the Hydra website. Generally, Hydra is an open-source framework that simplifies the development of research applications by providing the ability to create a hierarchical configuration dynamically. If you want to know how we used Hydra, we recommend you to read here.

Supported Datasets

We support LibriSpeech, KsponSpeech, and AISHELL-1.

LibriSpeech is a corpus of approximately 1,000 hours of 16kHz read English speech, prepared by Vassil Panayotov with the assistance of Daniel Povey. The data was derived from reading audiobooks from the LibriVox project, and has been carefully segmented and aligned.

Aishell is an open-source Chinese Mandarin speech corpus published by Beijing Shell Shell Technology Co.,Ltd. 400 people from different accent areas in China were invited to participate in the recording, which was conducted in a quiet indoor environment using high fidelity microphone and downsampled to 16kHz.

KsponSpeech is a large-scale spontaneous speech corpus of Korean. This corpus contains 969 hours of general open-domain dialog utterances, spoken by about 2,000 native Korean speakers in a clean environment. All data were constructed by recording the dialogue of two people freely conversing on a variety of topics and manually transcribing the utterances. To start training, the KsponSpeech dataset must be prepared in advance. To download KsponSpeech, you need permission from AI Hub.

Pre-processed Manifest Files

Dataset Unit Manifest Vocab SP-Model
LibriSpeech character [Link] [Link] -
LibriSpeech subword [Link] [Link] [Link]
AISHELL-1 character [Link] [Link] -
KsponSpeech character [Link] [Link] -
KsponSpeech subword [Link] [Link] [Link]
KsponSpeech grapheme [Link] [Link] -

KsponSpeech needs permission from AI Hub.
Please send e-mail including the approved screenshot to [email protected].

Manifest File

  • Manifest file format:
LibriSpeech/test-other/8188/269288/8188-269288-0052.flac        ▁ANNIE ' S ▁MANNER ▁WAS ▁VERY ▁MYSTERIOUS       4039 20 5 531 17 84 2352
LibriSpeech/test-other/8188/269288/8188-269288-0053.flac        ▁ANNIE ▁DID ▁NOT ▁MEAN ▁TO ▁CONFIDE ▁IN ▁ANYONE ▁THAT ▁NIGHT ▁AND ▁THE ▁KIND EST ▁THING ▁WAS ▁TO ▁LEAVE ▁HER ▁A LONE    4039 99 35 251 9 4758 11 2454 16 199 6 4 323 200 255 17 9 370 30 10 492
LibriSpeech/test-other/8188/269288/8188-269288-0054.flac        ▁TIRED ▁OUT ▁LESLIE ▁HER SELF ▁DROPP ED ▁A SLEEP        1493 70 4708 30 115 1231 7 10 1706
LibriSpeech/test-other/8188/269288/8188-269288-0055.flac        ▁ANNIE ▁IS ▁THAT ▁YOU ▁SHE ▁CALL ED ▁OUT        4039 34 16 25 37 208 7 70
LibriSpeech/test-other/8188/269288/8188-269288-0056.flac        ▁THERE ▁WAS ▁NO ▁REPLY ▁BUT ▁THE ▁SOUND ▁OF ▁HURRY ING ▁STEPS ▁CAME ▁QUICK ER ▁AND ▁QUICK ER ▁NOW ▁AND ▁THEN ▁THEY ▁WERE ▁INTERRUPTED ▁BY ▁A ▁GROAN     57 17 56 1368 33 4 489 8 1783 14 1381 133 571 49 6 571 49 82 6 76 45 54 2351 44 10 3154
LibriSpeech/test-other/8188/269288/8188-269288-0057.flac        ▁OH ▁THIS ▁WILL ▁KILL ▁ME ▁MY ▁HEART ▁WILL ▁BREAK ▁THIS ▁WILL ▁KILL ▁ME 299 46 71 669 50 41 235 71 977 46 71 669 50
...
...

Training examples

You can simply train with LibriSpeech dataset like below:

  • Example1: Train the conformer-lstm model with filter-bank features on GPU.
$ python ./openspeech_cli/hydra_train.py \
    dataset=librispeech \
    dataset.dataset_download=True \
    dataset.dataset_path=$DATASET_PATH \
    dataset.manifest_file_path=$MANIFEST_FILE_PATH \  
    vocab=libri_subword \
    model=conformer_lstm \
    audio=fbank \
    lr_scheduler=warmup_reduce_lr_on_plateau \
    trainer=gpu \
    criterion=joint_ctc_cross_entropy

You can simply train with KsponSpeech dataset like below:

  • Example2: Train the listen-attend-spell model with mel-spectrogram features On TPU:
$ python ./openspeech_cli/hydra_train.py \
    dataset=ksponspeech \
    dataset.dataset_path=$DATASET_PATH \
    dataset.manifest_file_path=$MANIFEST_FILE_PATH \  
    dataset.test_dataset_path=$TEST_DATASET_PATH \
    dataset.test_manifest_dir=$TEST_MANIFEST_DIR \
    vocab=kspon_character \
    model=listen_attend_spell \
    audio=melspectrogram \
    lr_scheduler=warmup_reduce_lr_on_plateau \
    trainer=tpu \
    criterion=joint_ctc_cross_entropy

You can simply train with AISHELL-1 dataset like below:

  • Example3: Train the quartznet model with mfcc features On GPU with FP16:
$ python ./openspeech_cli/hydra_train.py \
    dataset=aishell \
    dataset.dataset_path=$DATASET_PATH \
    dataset.dataset_download=True \
    dataset.manifest_file_path=$MANIFEST_FILE_PATH \  
    vocab=aishell_character \
    model=quartznet15x5 \
    audio=mfcc \
    lr_scheduler=warmup_reduce_lr_on_plateau \
    trainer=gpu-fp16 \
    criterion=ctc

Evaluation examples

  • Example1: Evaluation the listen_attend_spell model:
$ python ./openspeech_cli/hydra_eval.py \
    audio=melspectrogram \
    eval.model_name=listen_attend_spell \
    eval.dataset_path=$DATASET_PATH \
    eval.checkpoint_path=$CHECKPOINT_PATH \
    eval.manifest_file_path=$MANIFEST_FILE_PATH  
  • Example2: Evaluation the listen_attend_spell, conformer_lstm models with ensemble:
$ python ./openspeech_cli/hydra_eval.py \
    audio=melspectrogram \
    eval.model_names=(listen_attend_spell, conformer_lstm) \
    eval.dataset_path=$DATASET_PATH \
    eval.checkpoint_paths=($CHECKPOINT_PATH1, $CHECKPOINT_PATH2) \
    eval.ensemble_weights=(0.3, 0.7) \
    eval.ensemble_method=weighted \
    eval.manifest_file_path=$MANIFEST_FILE_PATH  

Installation

This project recommends Python 3.7 or higher.
We recommend creating a new virtual environment for this project (using virtual env or conda).

Prerequisites

  • numpy: pip install numpy (Refer here for problem installing Numpy).
  • pytorch: Refer to PyTorch website to install the version w.r.t. your environment.
  • librosa: conda install -c conda-forge librosa (Refer here for problem installing librosa)
  • torchaudio: pip install torchaudio==0.6.0 (Refer here for problem installing torchaudio)
  • sentencepiece: pip install sentencepiece (Refer here for problem installing sentencepiece)
  • pytorch-lightning: pip install pytorch-lightning (Refer here for problem installing pytorch-lightning)
  • hydra: pip install hydra-core --upgrade (Refer here for problem installing hydra)
  • warp-rnnt: Refer to warp-rnnt page to install the library.
  • ctcdecode: Refer to ctcdecode page to install the library.

Install from pypi

You can install OpenSpeech with pypi.

pip install openspeech-core

Install from source

Currently we only support installation from source code using setuptools. Checkout the source code and run the
following commands:

$ ./install.sh

Install Apex (for 16-bit training)

For faster training install NVIDIA's apex library:

$ git clone https://github.com/NVIDIA/apex
$ cd apex

# ------------------------
# OPTIONAL: on your cluster you might need to load CUDA 10 or 9
# depending on how you installed PyTorch

# see available modules
module avail

# load correct CUDA before install
module load cuda-10.0
# ------------------------

# make sure you've loaded a cuda version > 4.0 and < 7.0
module load gcc-6.1.0

$ pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./

Troubleshoots and Contributing

If you have any questions, bug reports, and feature requests, please open an issue on Github.

We appreciate any kind of feedback or contribution. Feel free to proceed with small issues like bug fixes, documentation improvement. For major contributions and new features, please discuss with the collaborators in corresponding issues.

Code Style

We follow PEP-8 for code style. Especially the style of docstrings is important to generate documentation.

License

This project is licensed under the MIT LICENSE - see the LICENSE.md file for details

Citation

If you use the system for academic work, please cite:

@GITHUB{2021-OpenSpeech,
  author       = {Kim, Soohwan and Ha, Sangchun and Cho, Soyoung},
  author email = {[email protected], [email protected], [email protected]}
  title        = {OpenSpeech: Open-Source Toolkit for End-to-End Speech Recognition},
  howpublished = {\url{https://github.com/sooftware/OpenSpeech}},
  docs         = {\url{https://sooftware.github.io/OpenSpeech}},
  year         = {2021}
}
You might also like...
An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition
An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition

CRNN paper:An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition 1. create your ow

Ptorch NLU, a Chinese text classification and sequence annotation toolkit, supports multi class and multi label classification tasks of Chinese long text and short text, and supports sequence annotation tasks such as Chinese named entity recognition, part of speech tagging and word segmentation.

Pytorch-NLU,一个中文文本分类、序列标注工具包,支持中文长文本、短文本的多类、多标签分类任务,支持中文命名实体识别、词性标注、分词等序列标注任务。 Ptorch NLU, a Chinese text classification and sequence annotation toolkit, supports multi class and multi label classification tasks of Chinese long text and short text, and supports sequence annotation tasks such as Chinese named entity recognition, part of speech tagging and word segmentation.

Text to speech is a process to convert any text into voice. Text to speech project takes words on digital devices and convert them into audio. Here I have used Google-text-to-speech library popularly known as gTTS library to convert text file to .mp3 file. Hope you like my project!
A PyTorch Implementation of End-to-End Models for Speech-to-Text

speech Speech is an open-source package to build end-to-end models for automatic speech recognition. Sequence-to-sequence models with attention, Conne

An open source library for deep learning end-to-end dialog systems and chatbots.
An open source library for deep learning end-to-end dialog systems and chatbots.

DeepPavlov is an open-source conversational AI library built on TensorFlow, Keras and PyTorch. DeepPavlov is designed for development of production re

An open source library for deep learning end-to-end dialog systems and chatbots.
An open source library for deep learning end-to-end dialog systems and chatbots.

DeepPavlov is an open-source conversational AI library built on TensorFlow, Keras and PyTorch. DeepPavlov is designed for development of production re

An open source library for deep learning end-to-end dialog systems and chatbots.
An open source library for deep learning end-to-end dialog systems and chatbots.

DeepPavlov is an open-source conversational AI library built on TensorFlow, Keras and PyTorch. DeepPavlov is designed for development of production re

PhoNLP: A BERT-based multi-task learning toolkit for part-of-speech tagging, named entity recognition and dependency parsing
PhoNLP: A BERT-based multi-task learning toolkit for part-of-speech tagging, named entity recognition and dependency parsing

PhoNLP is a multi-task learning model for joint part-of-speech (POS) tagging, named entity recognition (NER) and dependency parsing. Experiments on Vietnamese benchmark datasets show that PhoNLP produces state-of-the-art results, outperforming a single-task learning approach that fine-tunes the pre-trained Vietnamese language model PhoBERT for each task independently.

Releases(v0.3.0)
Owner
Soohwan Kim
Toward human-like A.I.
Soohwan Kim
A combination of autoregressors and autoencoders using XLNet for sentiment analysis

A combination of autoregressors and autoencoders using XLNet for sentiment analysis Abstract In this paper sentiment analysis has been performed in or

James Zaridis 2 Nov 20, 2021
PyJPBoatRace: Python-based Japanese boatrace tools 🚤

pyjpboatrace :speedboat: provides you with useful tools for data analysis and auto-betting for boatrace.

5 Oct 29, 2022
Code for Discovering Topics in Long-tailed Corpora with Causal Intervention.

Code for Discovering Topics in Long-tailed Corpora with Causal Intervention ACL2021 Findings Usage 0. Prepare environment Requirements: python==3.6 te

Xiaobao Wu 8 Dec 16, 2022
WIT (Wikipedia-based Image Text) Dataset is a large multimodal multilingual dataset comprising 37M+ image-text sets with 11M+ unique images across 100+ languages.

WIT (Wikipedia-based Image Text) Dataset is a large multimodal multilingual dataset comprising 37M+ image-text sets with 11M+ unique images across 100+ languages.

Google Research Datasets 740 Dec 24, 2022
Implementation / replication of DALL-E, OpenAI's Text to Image Transformer, in Pytorch

Implementation / replication of DALL-E, OpenAI's Text to Image Transformer, in Pytorch

Phil Wang 5k Jan 02, 2023
Which Apple Keeps Which Doctor Away? Colorful Word Representations with Visual Oracles

Which Apple Keeps Which Doctor Away? Colorful Word Representations with Visual Oracles (TASLP 2022)

Zhuosheng Zhang 3 Apr 14, 2022
source code for paper: WhiteningBERT: An Easy Unsupervised Sentence Embedding Approach.

WhiteningBERT Source code and data for paper WhiteningBERT: An Easy Unsupervised Sentence Embedding Approach. Preparation git clone https://github.com

49 Dec 17, 2022
Telegram bot to auto post messages of one channel in another channel as soon as it is posted, without the forwarded tag.

Channel Auto-Post Bot This bot can send all new messages from one channel, directly to another channel (or group, just in case), without the forwarded

Aditya 128 Dec 29, 2022
DELTA is a deep learning based natural language and speech processing platform.

DELTA - A DEep learning Language Technology plAtform What is DELTA? DELTA is a deep learning based end-to-end natural language and speech processing p

DELTA 1.5k Dec 26, 2022
The ibet-Prime security token management system for ibet network.

ibet-Prime The ibet-Prime security token management system for ibet network. Features ibet-Prime is an API service that enables the issuance and manag

BOOSTRY 8 Dec 22, 2022
Sorce code and datasets for "K-BERT: Enabling Language Representation with Knowledge Graph",

K-BERT Sorce code and datasets for "K-BERT: Enabling Language Representation with Knowledge Graph", which is implemented based on the UER framework. R

Weijie Liu 834 Jan 09, 2023
Unlimited Call - Text Bombing Tool

FastBomber Unlimited Call - Text Bombing Tool Installation On Termux

Aryan 6 Nov 10, 2022
An Analysis Toolkit for Natural Language Generation (Translation, Captioning, Summarization, etc.)

VizSeq is a Python toolkit for visual analysis on text generation tasks like machine translation, summarization, image captioning, speech translation

Facebook Research 409 Oct 28, 2022
Princeton NLP's pre-training library based on fairseq with DeepSpeed kernel integration 🚃

This repository provides a library for efficient training of masked language models (MLM), built with fairseq. We fork fairseq to give researchers mor

Princeton Natural Language Processing 92 Dec 27, 2022
Interpretable Models for NLP using PyTorch

This repo is deprecated. Please find the updated package here. https://github.com/EdGENetworks/anuvada Anuvada: Interpretable Models for NLP using PyT

Sandeep Tammu 19 Dec 17, 2022
MPNet: Masked and Permuted Pre-training for Language Understanding

MPNet MPNet: Masked and Permuted Pre-training for Language Understanding, by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu, is a novel pre-tr

Microsoft 228 Nov 21, 2022
Gold standard corpus annotated with verb-preverb connections for Hungarian.

Hungarian Preverb Corpus A gold standard corpus manually annotated with verb-preverb connections for Hungarian. corpus The corpus consist of the follo

RIL Lexical Knowledge Representation Research Group 3 Jan 27, 2022
GPT-Code-Clippy (GPT-CC) is an open source version of GitHub Copilot, a language model

GPT-Code-Clippy (GPT-CC) is an open source version of GitHub Copilot, a language model -- based on GPT-3, called GPT-Codex -- that is fine-tuned on publicly available code from GitHub.

Nathan Cooper 2.3k Jan 01, 2023
NLPretext packages in a unique library all the text preprocessing functions you need to ease your NLP project.

NLPretext packages in a unique library all the text preprocessing functions you need to ease your NLP project.

Artefact 114 Dec 15, 2022
Transformer related optimization, including BERT, GPT

This repository provides a script and recipe to run the highly optimized transformer-based encoder and decoder component, and it is tested and maintained by NVIDIA.

NVIDIA Corporation 1.7k Jan 04, 2023