SCOOP (Scalable COncurrent Operations in Python)

Overview

SCOOP logo

SCOOP (Scalable COncurrent Operations in Python) is a distributed task module allowing concurrent parallel programming on various environments, from heterogeneous grids to supercomputers. Its documentation is available on http://scoop.readthedocs.org/ .

Philosophy

SCOOP was designed from the following ideas:

  • The future is parallel;
  • Simple is beautiful;
  • Parallelism should be simpler.

These tenets are translated concretely in a minimum number of functions allowing maximum parallel efficiency while keeping at minimum the inner knowledge required to use them. It is implemented with Python 3 in mind while being compatible with Python 2.6+ to allow fast prototyping without sacrificing efficiency and speed.

Some comments we received on SCOOP:

Features

SCOOP features and advantages over futures, multiprocessing and similar modules are as follows:

  • Harness the power of multiple computers over network;
  • Ability to spawn multiple tasks inside a task;
  • API compatible with PEP-3148;
  • Parallelizing serial code with only minor modifications;
  • Efficient load-balancing.

Anatomy of a SCOOPed program

SCOOP can handle multiple diversified multi-layered tasks. With it, you can submit your different functions and data simultaneously and effortlessly while the framework executes them locally or remotely. Contrarily to most multiprocessing frameworks, it allows to launch subtasks within tasks.

http://scoop.readthedocs.org/en/latest/_images/introductory_tree.png

Through SCOOP, you can execute simultaneously tasks that are different by nature, shown by the task color, or different by complexity, shown by the task radius. The module will handle the physical considerations of parallelization, such as task distribution over your resources (load balancing), communications, etc.

Applications

The common applications of SCOOP consist but is not limited to:

  • Evolutionary Algorithms
  • Monte Carlo simulations
  • Data mining
  • Data processing
  • Graph traversal

Citing SCOOP

Authors of scientific papers including results generated using SCOOP are encouraged to cite the following paper.

{{{ @inproceedings{SCOOP_XSEDE2014, title={Once you SCOOP, no need to fork}, author={Hold-Geoffroy, Yannick and Gagnon, Olivier and Parizeau, Marc}, booktitle={Proceedings of the 2014 Annual Conference on Extreme Science and Engineering Discovery Environment}, pages={60}, year={2014}, organization={ACM} } }}}

Useful links

You can download the latest stable version, check the project documentation, post to the mailing list or submit an issue if you've found one.

Jug: A Task-Based Parallelization Framework

Jug: A Task-Based Parallelization Framework Jug allows you to write code that is broken up into tasks and run different tasks on different processors.

Luis Pedro Coelho 387 Dec 21, 2022
A curated list of awesome Python asyncio frameworks, libraries, software and resources

Awesome asyncio A carefully curated list of awesome Python asyncio frameworks, libraries, software and resources. The Python asyncio module introduced

Timo Furrer 3.8k Jan 08, 2023
Thread-safe asyncio-aware queue for Python

Mixed sync-async queue, supposed to be used for communicating between classic synchronous (threaded) code and asynchronous

aio-libs 665 Jan 03, 2023
A concurrent sync tool which works with multiple sources and targets.

Concurrent Sync A concurrent sync tool which works similar to rsync. It supports syncing given sources with multiple targets concurrently. Requirement

Halit Şimşek 2 Jan 11, 2022
AnyIO is an asynchronous networking and concurrency library that works on top of either asyncio or trio.

AnyIO is an asynchronous networking and concurrency library that works on top of either asyncio or trio. It implements trio-like structured concurrenc

Alex Grönholm 1.1k Jan 06, 2023
Parallelformers: An Efficient Model Parallelization Toolkit for Deployment

Parallelformers: An Efficient Model Parallelization Toolkit for Deployment

TUNiB 559 Dec 28, 2022
Unsynchronize asyncio by using an ambient event loop, or executing in separate threads or processes.

unsync Unsynchronize asyncio by using an ambient event loop, or executing in separate threads or processes. Quick Overview Functions marked with the @

Alex Sherman 802 Dec 28, 2022
Ultra fast asyncio event loop.

uvloop is a fast, drop-in replacement of the built-in asyncio event loop. uvloop is implemented in Cython and uses libuv under the hood. The project d

magicstack 9.1k Jan 07, 2023
A lightweight (serverless) native python parallel processing framework based on simple decorators and call graphs.

A lightweight (serverless) native python parallel processing framework based on simple decorators and call graphs, supporting both control flow and dataflow execution paradigms as well as de-centrali

102 Jan 06, 2023
rosny is a lightweight library for building concurrent systems.

rosny is a lightweight library for building concurrent systems. Installation Tested on: Linux Python = 3.6 From pip: pip install rosny From source: p

Ruslan Baikulov 6 Oct 05, 2021
A Python package for easy multiprocessing, but faster than multiprocessing

MPIRE, short for MultiProcessing Is Really Easy, is a Python package for multiprocessing, but faster and more user-friendly than the default multiprocessing package.

753 Dec 29, 2022
Python Multithreading without GIL

Multithreaded Python without the GIL

Sam Gross 2.3k Jan 05, 2023
Backport of the concurrent.futures package to Python 2.6 and 2.7

This is a backport of the concurrent.futures standard library module to Python 2. It does not work on Python 3 due to Python 2 syntax being used in th

Alex Grönholm 224 Nov 07, 2022
🌀 Pykka makes it easier to build concurrent applications.

🌀 Pykka Pykka makes it easier to build concurrent applications. Pykka is a Python implementation of the actor model. The actor model introduces some

Stein Magnus Jodal 1.1k Dec 30, 2022
Raise asynchronous exceptions in other thread, control the timeout of blocks or callables with a context manager or a decorator

stopit Raise asynchronous exceptions in other threads, control the timeout of blocks or callables with two context managers and two decorators. Attent

Gilles Lenfant 97 Oct 12, 2022
SCOOP (Scalable COncurrent Operations in Python)

SCOOP (Scalable COncurrent Operations in Python) is a distributed task module allowing concurrent parallel programming on various environments, from h

Yannick Hold 573 Dec 27, 2022
Trio – a friendly Python library for async concurrency and I/O

Trio – a friendly Python library for async concurrency and I/O The Trio project aims to produce a production-quality, permissively licensed, async/awa

5k Jan 07, 2023
aiomisc - miscellaneous utils for asyncio

aiomisc - miscellaneous utils for asyncio Miscellaneous utils for asyncio. The complete documentation is available in the following languages: English

aiokitchen 295 Jan 08, 2023
Simple package to enhance Python's concurrent.futures for memory efficiency

future-map is a Python library to use together with the official concurrent.futures module.

Arai Hiroki 2 Nov 15, 2022