Motion planning environment for Sampling-based Planners

Overview

Sampling-Based Motion Planners' Testing Environment

Python version CI Build docs Code style: black License DOI

Sampling-based motion planners' testing environment (sbp-env) is a full feature framework to quickly test different sampling-based algorithms for motion planning. sbp-env focuses on the flexibility of tinkering with different aspects of the framework, and had divided the main planning components into two categories (i) samplers and (ii) planners.

The focus of motion planning research had been mainly on (i) improving the sampling efficiency (with methods such as heuristic or learned distribution) and (ii) the algorithmic aspect of the planner using different routines to build a connected graph. Therefore, by separating the two components one can quickly swap out different components to test novel ideas.

Have a look at the documentations for more detail information. If you are looking for the previous code for the RRdT* paper it is now archived at soraxas/rrdt.

Installation

Optional

I recommend first creates a virtual environment with

# assumes python3 and bash shell
python -m venv sbp_env
source sbp_env/bin/activate

Install dependencies

You can install all the needed packages with pip.

pip install -r requirements.txt

There is also an optional dependency on klampt if you want to use the 3D simulator. Refer to its installation guide for details.

Quick Guide

You can get a detailed help message with

python main.py --help

but the basic syntax is

python main.py <PLANNER> <MAP> [options]

It will open a new window that display a map on it. Every white pixel is assumed to be free, and non-white pixels are obstacles. You will need to use your mouse to select two points on the map, the first will be set as the starting point and the second as the goal point.

Demos

Run maps with different available Planners

This repository contains a framework to performs quick experiments for Sampling-Based Planners (SBPs) that are implemented in Python. The followings are planners that had implemented and experimented in this framework.

Note that the commands shown in the respective demos can be customised with additional options. In fact, the actual command format used for the demonstrations is

python main.py <PLANNER> maps/room1.png start <sx>,<sy> goal <sx>,<sy> -vv

to have a fix set of starting and goal points for consistent visualisation, but we omitted the start/goal options in the following commands for clarity.

RRdT*

python main.py rrdt maps/room1.png -vv

RRdT* Planner

RRT*

python main.py rrt maps/room1.png -vv

RRT* Planner

Bi-RRT*

python main.py birrt maps/room1.png -vv

Bi-RRT* Planner

Informed RRT*

python main.py informedrrt maps/room1.png -vv

Informed RRT* Planner

The red ellipse shown is the dynamic sampling area for Informed RRT*

Others

There are also some other planners included in this repository. Some are preliminary planner that inspired RRdT*, some are planners with preliminary ideas, and some are useful for debugging.

Reference to this repository

You can use the following citation if you use this repository for your research

@article{lai2021SbpEnv,
  doi = {10.21105/joss.03782},
  url = {https://doi.org/10.21105/joss.03782},
  year = {2021},
  publisher = {The Open Journal},
  volume = {6},
  number = {66},
  pages = {3782},
  author = {Tin Lai},
  title = {sbp-env: A Python Package for Sampling-based Motion Planner and Samplers},
  journal = {Journal of Open Source Software}
}
Comments
  • question on (example) usage

    question on (example) usage

    According to the submitted paper, with sbp-env "one can quickly swap out different components to test novel ideas" and "validate ... hypothesis rapidly". However, from the examples in the documentation, it is unclear to me how I can obtain performance metrics on the planners when a run a test.

    Is there a way to save such metrics to a file or print them when running planners in sbp-env? If not, this might be a nice feature to implement in a future version. Otherwise, you could consider adding an example to the documentation on how to compare different planners in the same scenario.

    (this question is part of the JOSS review openjournals/joss-reviews#3782)

    opened by OlgerSiebinga 5
  • Path recognition issue

    Path recognition issue

    I tried some source, destination positions with the following command and there seems some issue in recognition of the path. python main.py rrt maps/4d.png --engine 4d

    Attaching screenshot below: Screenshot from 2021-10-07 00-43-15

    (Part of the JOSS review openjournals/joss-reviews#3782)

    opened by KanishAnand 3
  • Python version compatibility with scipy

    Python version compatibility with scipy

    Mentioning the requirement of python version >= 3.8 in README would also help users the way it's done over here. Python versions < 3.8 are not compatible with scipy 1.6

    (Part of the JOSS review openjournals/joss-reviews#3782)

    opened by KanishAnand 3
  • Suggestion to make installation easier

    Suggestion to make installation easier

    I was wondering why you have the following remark block in your installation instructions: image

    I think it would be easier to add those two packages to the file requirements_klampt.txt. That way they'll be installed automatically, it saves the user an extra action. Or is there any reason I'm missing why that shouldn't be done?

    opened by OlgerSiebinga 3
  • Exception after running the example from the documentation

    Exception after running the example from the documentation

    When I run the example from the quick start page in the documentation, an exception occurs.

    The command: python main.py rrt maps/room1.png

    The exception:

    Traceback (most recent call last):
      File "main.py", line 287, in <module>
        environment.run()
      File "C:\Users\Olger\PycharmProjects\sbp-env\env.py", line 198, in run
        self.visualiser.terminates_hook()
      File "C:\Users\Olger\PycharmProjects\sbp-env\visualiser.py", line 148, in terminates_hook
        self.env_instance.sampler.visualiser.terminates_hook()
      File "C:\Users\Olger\PycharmProjects\sbp-env\env.py", line 126, in __getattr__
        return object.__getattribute__(self.visualiser, attr)
    AttributeError: 'PygameEnvVisualiser' object has no attribute 'sampler'
    

    The exception only occurs after the simulation has finished so it seems like a minor problem. Although I'm not really sure what happens at env.py, line 126, in __getattr__ and why. So, I don't have a proposed fix.

    opened by OlgerSiebinga 2
  • invalid start and goal point can be specified with command-line interface

    invalid start and goal point can be specified with command-line interface

    When specifying a goal and start point in the commands line, it is possible to specify invalid points. Specifying an invalid start and goal will result in an infinite loop.

    For example, running: python main.py rrt maps\room1.png start 10,10 goal 15,15, will result in an infinite loop with the following GUI:

    image

    Expected behavior when supplying an invalid option would be an exception.

    opened by OlgerSiebinga 1
  • Test Instructions

    Test Instructions

    Though it's standard, adding instruction to run tests in the documentation might be helpful for users wanting to contribute.

    (Part of the JOSS review openjournals/joss-reviews#3782)

    opened by KanishAnand 1
  • Graph building of prm planner without user information

    Graph building of prm planner without user information

    The graph building method in the prm planner (build_graph() in prmPlanner.py) can take quite some time when a large number of nodes is used. However, the user is not notified that the planner is still processing data. The first time I encountered this, I suspected the software got stuck in an infinite loop because the window was not responding anymore. I think this can be easily fixed by adding a tqdm bar in the build_graph() method (at line 83)

    (this suggestion is part of the JOSS review openjournals/joss-reviews#3782)

    opened by OlgerSiebinga 1
  • Skip-optimality Problem

    Skip-optimality Problem

    Hi 1.I am wonderingt that the parameter (use_rtree)in choose_least_cost_parent() function and rewire() funtion (RRT). Is it no longer necessary because we use numpy's calculation method? 2. When i run the informedrrt algorithm, the ellipse display of the graphic drawing does not appear as shown in the document. How can it be displayed? I'm sorry to interrupt you from your busy schedule.

    opened by Jiawei-00 7
Releases(v2.0.1)
A very tiny, very simple, and very secure file encryption tool.

Picocrypt is a very tiny (hence "Pico"), very simple, yet very secure file encryption tool. It uses the modern ChaCha20-Poly1305 cipher suite as well

Evan Su 1k Dec 30, 2022
Course about deep learning for computer vision and graphics co-developed by YSDA and Skoltech.

Deep Vision and Graphics This repo supplements course "Deep Vision and Graphics" taught at YSDA @fall'21. The course is the successor of "Deep Learnin

Yandex School of Data Analysis 160 Jan 02, 2023
AMTML-KD: Adaptive Multi-teacher Multi-level Knowledge Distillation

AMTML-KD: Adaptive Multi-teacher Multi-level Knowledge Distillation

Frank Liu 26 Oct 13, 2022
Deep Learning for Time Series Forecasting.

nixtlats:Deep Learning for Time Series Forecasting [nikstla] (noun, nahuatl) Period of time. State-of-the-art time series forecasting for pytorch. Nix

Nixtla 5 Dec 06, 2022
Python Wrapper for Embree

pyembree Python Wrapper for Embree Installation You can install pyembree (and embree) via the conda-forge package. $ conda install -c conda-forge pyem

Anthony Scopatz 67 Dec 24, 2022
Repo for the paper Extrapolating from a Single Image to a Thousand Classes using Distillation

Extrapolating from a Single Image to a Thousand Classes using Distillation by Yuki M. Asano* and Aaqib Saeed* (*Equal Contribution) Extrapolating from

Yuki M. Asano 16 Nov 04, 2022
Implementation of Gans

GAN Generative Adverserial Networks are an approach to generative data modelling using Deep learning methods. I have currently implemented : DCGAN on

Sibam Parida 5 Sep 07, 2021
Code for the paper "Implicit Representations of Meaning in Neural Language Models"

Implicit Representations of Meaning in Neural Language Models Preliminaries Create and set up a conda environment as follows: conda create -n state-pr

Belinda Li 39 Nov 03, 2022
Mortgage-loan-prediction - Show how to perform advanced Analytics and Machine Learning in Python using a full complement of PyData utilities

Mortgage-loan-prediction - Show how to perform advanced Analytics and Machine Learning in Python using a full complement of PyData utilities

Deepak Nandwani 1 Dec 31, 2021
This is an official implementation of CvT: Introducing Convolutions to Vision Transformers.

Introduction This is an official implementation of CvT: Introducing Convolutions to Vision Transformers. We present a new architecture, named Convolut

Microsoft 408 Dec 30, 2022
Pytorch implementation of the paper "Topic Modeling Revisited: A Document Graph-based Neural Network Perspective"

Graph Neural Topic Model (GNTM) This is the pytorch implementation of the paper "Topic Modeling Revisited: A Document Graph-based Neural Network Persp

Dazhong Shen 8 Sep 14, 2022
scalingscattering

Scaling The Scattering Transform : Deep Hybrid Networks This repository contains the experiments found in the paper: https://arxiv.org/abs/1703.08961

Edouard Oyallon 78 Dec 21, 2022
SIEM Logstash parsing for more than hundred technologies

LogIndexer Pipeline Logstash Parsing Configurations for Elastisearch SIEM and OpenDistro for Elasticsearch SIEM Why this project exists The overhead o

146 Dec 29, 2022
Score refinement for confidence-based 3D multi-object tracking

Score refinement for confidence-based 3D multi-object tracking Our video gives a brief explanation of our Method. This is the official code for the pa

Cognitive Systems Research Group 47 Dec 26, 2022
Elastic weight consolidation technique for incremental learning.

Overcoming-Catastrophic-forgetting-in-Neural-Networks Elastic weight consolidation technique for incremental learning. About Use this API if you dont

Shivam Saboo 89 Dec 22, 2022
Semantically Contrastive Learning for Low-light Image Enhancement

Semantically Contrastive Learning for Low-light Image Enhancement Here, we propose an effective semantically contrastive learning paradigm for Low-lig

48 Dec 16, 2022
Release of SPLASH: Dataset for semantic parse correction with natural language feedback in the context of text-to-SQL parsing

SPLASH: Semantic Parsing with Language Assistance from Humans SPLASH is dataset for the task of semantic parse correction with natural language feedba

Microsoft Research - Language and Information Technologies (MSR LIT) 35 Oct 31, 2022
Image segmentation with private İstanbul Dataset

Image Segmentation This repo was created for academic research and test result. Repo will update after academic article online. This repo contains wei

İrem KÖMÜRCÜ 9 Dec 11, 2022
A Streamlit demo demonstrating the Deep Dream technique. Adapted from the TensorFlow Deep Dream tutorial.

Streamlit Demo: Deep Dream A Streamlit demo demonstrating the Deep Dream technique. Adapted from the TensorFlow Deep Dream tutorial How to run this de

Streamlit 11 Dec 12, 2022
A platform for intelligent agent learning based on a 3D open-world FPS game developed by Inspir.AI.

Wilderness Scavenger: 3D Open-World FPS Game AI Challenge This is a platform for intelligent agent learning based on a 3D open-world FPS game develope

46 Nov 24, 2022