Source code for CVPR2022 paper "Abandoning the Bayer-Filter to See in the Dark"

Overview

Abandoning the Bayer-Filter to See in the Dark (CVPR 2022)

Paper: https://arxiv.org/abs/2203.04042 (Arxiv version)

This code includes the training and testing procedures of our network on our Mono-colored raw Paired (MCR) dataset and SID dataset's Sony part.

Abstract: Low-light image enhancement - a pervasive but challenging problem, plays a central role in enhancing the visibility of an image captured in a poor illumination environment. Due to the fact that not all photons can pass the Bayer-Filter on the sensor of the color camera, in this work, we first present a De-Bayer-Filter simulator based on deep neural networks to generate a monochrome raw image from the colored raw image. Next, a fully convolutional network is proposed to achieve the low-light image enhancement by fusing colored raw data with synthesized monochrome raw data. Channel-wise attention is also introduced to the fusion process to establish a complementary interaction between features from colored and monochrome raw images. To train the convolutional networks, we propose a dataset with monochrome and color raw pairs named Mono-Colored Raw paired dataset (MCR) collected by using a monochrome camera without Bayer-Filter and a color camera with Bayer-Filter. The proposed pipeline take advantages of the fusion of the virtual monochrome and the color raw images and our extensive experiments indicate that significant improvement can be achieved by leveraging raw sensor data and data-driven learning.

pipeline

Video demos:

videos

Requirments

This is the Pytorch implementation of our work. The next requirments and some other frequently-used Library will be needed.

  1. Python >= 3.7
  2. Pytorch >= 1.7.1
  3. scikit-image 0.18.1
  4. imageio 2.9.0
  5. rawpy 0.17.0

Dataset

dataset

We propose the MCR [Google Drive, Baidu Netdisk (Extraction code: 22cv)], a dataset of colored raw and monochrome raw image pairs, captured with the same exposure setting. Each image has a resolution of 1280×1024.

The zip file contain 3 parts:

  • Mono_Colored_RAW_Paired_DATASET
    • RGB_GT (498 images)
    • Mono_GT (498 images)
    • Color_RAW_Input (498 × 8 images)

Totally 498 different scenes, each scene has 1 corresponding RGB and Monochrome ground truth and 8 different exposure color Raw inputs.

We assemble the color camera and the monochrome camera up and down, setting the same exposure times and gain in the same scene.

And we choose the monochrome GT and RGB GT under the longest exposure time.

The file name contains the image information. Take the image name:"C00001_48mp_0x8_0x1fff.tif" as an example.

"C" means it is color raw image;

"00001" is the image number;

"48mp" is the master clock frequency 48 MHz;

"0x8" is the hex number of global gain;

"0x1fff" indicate the shutter width of the camera which can calculate the exposure time.

For visual convenience, we convert '.raw' files to '.tif' files which have the same 'RGGB' Bayer-filter pattern as the raw files.

The relationship between shutter width and the exposure time is shown in the table below.

teaser

The first 2 rows represent the exposure time settings in the indoor scenes which image number is between 1 and 499, the last 2 rows represent outdoor scenes' exposure time settings.

Alignment

We propose our alignment code for color and monochrome images taken by 2 cameras under the same scene.

Alignment/raw folder contain samples of color and monochrome raw images in one scene.

Firstly,in convert_RAW.py, we reshape the flatten '.raw' files into '1280×1024' and save as '.tif' files, and then we use the 'exiftool.exe' to add the head info 'pbpx_exft_args.txt' and save the images as '.dng' and '.jpg' files.

Secondly, in alignment.py, we choose two '.jpg' images from color and monochrome, and use opencv to calculate the homograph to do the alignment for monochrome images.

Training & Testing

For fully loading our dataset, 36G RAM are needed.

The 'random_path_list' contain the split train&test path lists in our dataset.

We split 3984 pairs of our dataset into train set: 3600 pairs and test set: 384 pairs

We train and test our MCR dataset with train.py and test.py, and we also train our network on SID dataset's Sony part with train_on_SID.py and test_on_SID.py.

The pre-trained models on both datasets can be found at MCR_pretrained_model and SID_pretrained_model

Citation

If you find this project useful in your research, please consider citing:

@inproceedings{Dong2022Abandoning,
	title={Abandoning the Bayer-Filter to See in the Dark},
	author={Dong, Xingbo and Xu, Wanyan and Miao, Zhihui and Ma, Lan and Zhang, Chao and Yang, Jiewen and Jin, Zhe and Teoh, Andrew Beng Jin and Shen, Jiajun},
	booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
	year={2022}
}

License

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

End-to-End Object Detection with Fully Convolutional Network

This project provides an implementation for "End-to-End Object Detection with Fully Convolutional Network" on PyTorch.

472 Dec 22, 2022
LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image.

This project is based on ultralytics/yolov3. LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image. Download $ git clone http

26 Dec 13, 2022
This is the official PyTorch implementation for "Mesa: A Memory-saving Training Framework for Transformers".

A Memory-saving Training Framework for Transformers This is the official PyTorch implementation for Mesa: A Memory-saving Training Framework for Trans

Zhuang AI Group 105 Dec 06, 2022
Code for Multiple Instance Active Learning for Object Detection, CVPR 2021

Language: 简体中文 | English Introduction This is the code for Multiple Instance Active Learning for Object Detection, CVPR 2021. Installation A Linux pla

Tianning Yuan 269 Dec 21, 2022
Animatable Neural Radiance Fields for Modeling Dynamic Human Bodies

To make the comparison with Animatable NeRF easier on the Human3.6M dataset, we save the quantitative results at here, which also contains the results of other methods, including Neural Body, D-NeRF,

ZJU3DV 359 Jan 08, 2023
[peer review] An Arbitrary Scale Super-Resolution Approach for 3D MR Images using Implicit Neural Representation

ArSSR This repository is the pytorch implementation of our manuscript "An Arbitrary Scale Super-Resolution Approach for 3-Dimensional Magnetic Resonan

Qing Wu 19 Dec 12, 2022
Implementation of ICCV21 paper: PnP-DETR: Towards Efficient Visual Analysis with Transformers

Implementation of ICCV 2021 paper: PnP-DETR: Towards Efficient Visual Analysis with Transformers arxiv This repository is based on detr Recently, DETR

twang 113 Dec 27, 2022
Unsupervised Image Generation with Infinite Generative Adversarial Networks

Unsupervised Image Generation with Infinite Generative Adversarial Networks Here is the implementation of MICGANs using DCGAN architecture on MNIST da

16 Dec 24, 2021
Good Semi-Supervised Learning That Requires a Bad GAN

Good Semi-Supervised Learning that Requires a Bad GAN This is the code we used in our paper Good Semi-supervised Learning that Requires a Bad GAN Ziha

Zhilin Yang 177 Dec 12, 2022
[NeurIPS 2021] COCO-LM: Correcting and Contrasting Text Sequences for Language Model Pretraining

COCO-LM This repository contains the scripts for fine-tuning COCO-LM pretrained models on GLUE and SQuAD 2.0 benchmarks. Paper: COCO-LM: Correcting an

Microsoft 106 Dec 12, 2022
Spatial-Temporal Transformer for Dynamic Scene Graph Generation, ICCV2021

Spatial-Temporal Transformer for Dynamic Scene Graph Generation Pytorch Implementation of our paper Spatial-Temporal Transformer for Dynamic Scene Gra

Yuren Cong 119 Jan 01, 2023
This is the repository of the NeurIPS 2021 paper "Curriculum Disentangled Recommendation withNoisy Multi-feedback"

Curriculum_disentangled_recommendation This is the repository of the NeurIPS 2021 paper "Curriculum Disentangled Recommendation with Noisy Multi-feedb

14 Dec 20, 2022
codes for IKM (arXiv2021, Submitted to IEEE Trans)

Image-specific Convolutional Kernel Modulation for Single Image Super-resolution This repository is for IKM introduced in the following paper Yuanfei

Yuanfei Huang 9 Dec 29, 2022
Official repository for the NeurIPS 2021 paper Get Fooled for the Right Reason: Improving Adversarial Robustness through a Teacher-guided curriculum Learning Approach

Get Fooled for the Right Reason Official repository for the NeurIPS 2021 paper Get Fooled for the Right Reason: Improving Adversarial Robustness throu

Sowrya Gali 1 Apr 25, 2022
Repository for MeshTalk supplemental material and code once the (already approved) 16 GHS captures our lab will make publicly available are released.

meshtalk This repository contains code to run MeshTalk for face animation from audio. If you use MeshTalk, please cite @inproceedings{richard2021mesht

Meta Research 221 Jan 06, 2023
Unsupervised Foreground Extraction via Deep Region Competition

Unsupervised Foreground Extraction via Deep Region Competition [Paper] [Code] The official code repository for NeurIPS 2021 paper "Unsupervised Foregr

28 Nov 06, 2022
Relative Human dataset, CVPR 2022

Relative Human (RH) contains multi-person in-the-wild RGB images with rich human annotations, including: Depth layers (DLs): relative depth relationsh

Yu Sun 112 Dec 02, 2022
The Agriculture Domain of ERPNext comes with features to record crops and land

Agriculture The Agriculture Domain of ERPNext comes with features to record crops and land, track plant, soil, water, weather analytics, and even trac

Frappe 21 Jan 02, 2023
Single-stage Keypoint-based Category-level Object Pose Estimation from an RGB Image

CenterPose Overview This repository is the official implementation of the paper "Single-stage Keypoint-based Category-level Object Pose Estimation fro

NVIDIA Research Projects 188 Dec 27, 2022
HALO: A Skeleton-Driven Neural Occupancy Representation for Articulated Hands

HALO: A Skeleton-Driven Neural Occupancy Representation for Articulated Hands Oral Presentation, 3DV 2021 Korrawe Karunratanakul, Adrian Spurr, Zicong

Korrawe Karunratanakul 43 Oct 07, 2022