An implementation of the research paper "Retina Blood Vessel Segmentation Using A U-Net Based Convolutional Neural Network"

Overview

Retina Blood Vessels Segmentation

This is an implementation of the research paper "Retina Blood Vessel Segmentation Using A U-Net Based Convolutional Neural Network" written by Wang Xiancheng, Li Weia, et al.

Check out the standalone demo notebook and run segRetino inferences here.

Open In Colab

Inspiration

Various eye diseases can be diagnosed through the characterization of the retinal blood vessels. The characterization can be extracted by using proper imaging techniques and data analysis methods. In case of eye examination, one of the important tasks is the retinal image segmentation.The paper presents a network and training strategy that relies on the data augmentation to use the available annotated samples more efficiently, to segment retinal blood vessels using a UNET convolutional neural network.

Dataset

We have used the Digital Retinal Images for Vessel Extraction (DRIVE) dataset for retinal vessel segmentation. It consists of a total of JPEG 40 color fundus images; including 7 abnormal pathology cases. Each image resolution is 584x565 pixels with eight bits per color channel (3 channels), resized to 512x512 for our model.

Guidelines to download, setup and use the dataset

The DRIVE dataset may be downloaded here as two files named training.zip and test.zip.

Please write the following commands on your terminal to extract the file in the proper directory.

  $ mkdir drive
  $ unzip </path/to/training.zip> -d </path/to/drive>
  $ unzip </path/to/test.zip> -d </path/to/drive>

The resulting directory structure should be:

/path/to/drive
    -> train
        -> image
            -> 21_training_0.tif
            -> 22_training_0.tif
               ...
        -> mask
            -> 21_training_0.gif
            -> 22_training_0.gif
    -> test
        -> image
            -> 01_test_0.tif
            -> 02_test_0.tif
               ...
        -> mask
            -> 01_test_0.gif
            -> 02_test_0.gif

Model Components

The UNET CNN architecture may be divided into the Encoder, Bottleneck and Decoder blocks, followed by a final segmentation output layer.

  • Encoder: There are 4 Encoder blocks, each consisting of a convolutional block followed by a Spatial Max Pooling layer.
  • Bottleneck: The Bottleneck consists of a single convolutional block.
  • Decoder: There are 4 Decoder blocks, each consisting of a deconvolution operation, followed by a convolutional block, along with skip connections.

Note: The convolutional block consists of 2 conv2d operations each followed by a BatchNorm2d, finally followed by a ReLU activation.

model_arch

Implementation Details

  • Image preprocessing included augmentations like HorizontalFlip, VerticalFlip, Rotate.
  • Dataloader object was created for both training and validation data
  • Training process was carried out for 50 epochs, using the Adam Optimizer with a Learning Rate 1e-4.
  • Validation was carried out using Dice Loss and Intersection over Union Loss.

Installation and Quick Start

To use the repo and run inferences, please follow the guidelines below

  • Cloning the Repository:

      $ git clone https://github.com/srijarkoroy/segRetino
    
  • Entering the directory:

      $ cd segRetino/
    
  • Setting up the Python Environment with dependencies:

      $ pip install -r requirements.txt
    
  • Running the file for inference:

      $ python3 test.py
    

Running the test file downloads the pretrained weights of the UNET Model that we have trained on the DRIVE Dataset. However if you want to re-train the model please mention the path to your dataset on you local machine after augmentations, inside the train.py file, as:

train_x = sorted(glob(<path/to/augmented/train/image/folder/>))
train_y = sorted(glob(<path/to/augmented/mask/image/folder/>))

valid_x = sorted(glob(<path/to/test/image/folder/>))
valid_y = sorted(glob(<path/to/test/mask/folder/>))

Once the path has been mentioned, the model may be trained by running the command:

  $ python3 train.py

Note: If images have not been augmented, please see the instructions for augmentation here.

The test file saves two images in the mentioned paths, a masked image showing only the blood vessels, and a blend image showing the blood vessels within the retina. If you don't want to save the blend image, consider running the following code snippet:

# Creating the SegRetino object initialized with the test image path
seg = SegRetino('<path/to/test/img>')

# Running inference
seg.inference(set_weight_dir = 'unet.pth', path = '<path/to/save/masked/image>', blend=False, blend_path = None)

Check out the standalone demo notebook and run segRetino inferences here.

Note: Is is advisable to use a GPU for running the inferences since performing segmentation on 512x512 images with a heavy UNET architecture is expensive.

Results from Implementation

Original Image Masked Image Blend Image

Contributors

Contribution

Contributions are always welcome! Please check out this doc for Contribution Guidelines.

Owner
Srijarko Roy
AI Enthusiast!
Srijarko Roy
Code for the paper: Audio-Visual Scene Analysis with Self-Supervised Multisensory Features

[Paper] [Project page] This repository contains code for the paper: Andrew Owens, Alexei A. Efros. Audio-Visual Scene Analysis with Self-Supervised Mu

Andrew Owens 202 Dec 13, 2022
Pre-trained model, code, and materials from the paper "Impact of Adversarial Examples on Deep Learning Models for Biomedical Image Segmentation" (MICCAI 2019).

Adaptive Segmentation Mask Attack This repository contains the implementation of the Adaptive Segmentation Mask Attack (ASMA), a targeted adversarial

Utku Ozbulak 53 Jul 04, 2022
Mmdetection3d Noted - MMDetection3D is an open source object detection toolbox based on PyTorch

MMDetection3D is an open source object detection toolbox based on PyTorch

Jiangjingwen 13 Jan 06, 2023
Pytorch implementation for the EMNLP 2020 (Findings) paper: Connecting the Dots: A Knowledgeable Path Generator for Commonsense Question Answering

Path-Generator-QA This is a Pytorch implementation for the EMNLP 2020 (Findings) paper: Connecting the Dots: A Knowledgeable Path Generator for Common

Peifeng Wang 33 Dec 05, 2022
Pytorch0.4.1 codes for InsightFace

InsightFace_Pytorch Pytorch0.4.1 codes for InsightFace 1. Intro This repo is a reimplementation of Arcface(paper), or Insightface(github) For models,

1.5k Jan 01, 2023
code associated with ACL 2021 DExperts paper

DExperts Hi! This repository contains code for the paper DExperts: Decoding-Time Controlled Text Generation with Experts and Anti-Experts to appear at

Alisa Liu 68 Dec 15, 2022
Code for the paper "Next Generation Reservoir Computing"

Next Generation Reservoir Computing This is the code for the results and figures in our paper "Next Generation Reservoir Computing". They are written

OSU QuantInfo Lab 105 Dec 20, 2022
PyTorch Implementation of Google Brain's WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis

WaveGrad2 - PyTorch Implementation PyTorch Implementation of Google Brain's WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis. Status (202

Keon Lee 59 Dec 06, 2022
An implementation of an abstract algebra for music tones (pitches).

nbdev template Use this template to more easily create your nbdev project. If you are using an older version of this template, and want to upgrade to

Open Music Kit 0 Oct 10, 2022
Implementation of the "Point 4D Transformer Networks for Spatio-Temporal Modeling in Point Cloud Videos" paper.

Point 4D Transformer Networks for Spatio-Temporal Modeling in Point Cloud Videos Introduction Point cloud videos exhibit irregularities and lack of or

Hehe Fan 101 Dec 29, 2022
The aim of this project is to build an AI bot that can play the Wordle game, or more generally Squabble

Wordle RL The aim of this project is to build an AI bot that can play the Wordle game, or more generally Squabble I know there are more deterministic

Aditya Arora 3 Feb 22, 2022
Frequency Spectrum Augmentation Consistency for Domain Adaptive Object Detection

Frequency Spectrum Augmentation Consistency for Domain Adaptive Object Detection Main requirements torch = 1.0 torchvision = 0.2.0 Python 3 Environm

15 Apr 04, 2022
To Design and Implement Logistic Regression to Classify Between Benign and Malignant Cancer Types

To Design and Implement Logistic Regression to Classify Between Benign and Malignant Cancer Types, from a Database Taken From Dr. Wolberg reports his Clinic Cases.

Astitva Veer Garg 1 Jul 31, 2022
Computer vision - fun segmentation experience using classic and deep tools :)

Computer_Vision_Segmentation_Fun Segmentation of Images and Video. Tools: pytorch Models: Classic model - GrabCut Deep model - Deeplabv3_resnet101 Flo

Mor Ventura 1 Dec 18, 2021
Code for CVPR2019 Towards Natural and Accurate Future Motion Prediction of Humans and Animals

Motion prediction with Hierarchical Motion Recurrent Network Introduction This work concerns motion prediction of articulate objects such as human, fi

Shuang Wu 85 Dec 11, 2022
Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes

Neural Scene Flow Fields PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 2021 [Projec

Zhengqi Li 583 Dec 30, 2022
Company clustering with K-means/GMM and visualization with PCA, t-SNE, using SSAN relation extraction

RE results graph visualization and company clustering Installation pip install -r requirements.txt python -m nltk.downloader stopwords python3.7 main.

Jieun Han 1 Oct 06, 2022
Contenido del curso Bases de datos del DCC PUC versión 2021-2

IIC2413 - Bases de Datos Tabla de contenidos Equipo Profesores Ayudantes Contenidos Calendario Evaluaciones Resumen de notas Foro Política de integrid

54 Nov 23, 2022
A Jupyter notebook to play with NVIDIA's StyleGAN3 and OpenAI's CLIP for a text-based guided image generation.

A Jupyter notebook to play with NVIDIA's StyleGAN3 and OpenAI's CLIP for a text-based guided image generation.

Eugenio Herrera 175 Dec 29, 2022
An unreferenced image captioning metric (ACL-21)

UMIC This repository provides an unferenced image captioning metric from our ACL 2021 paper UMIC: An Unreferenced Metric for Image Captioning via Cont

hwanheelee 14 Nov 20, 2022