[NIPS 2021] UOTA: Improving Self-supervised Learning with Automated Unsupervised Outlier Arbitration.

Related tags

Deep Learninguota
Overview

UOTA: Improving Self-supervised Learning with Automated Unsupervised Outlier Arbitration

This repository is the official PyTorch implementation of UOTA (Unsupervised OuTlier Arbitration).

0 Requirements

  • Python 3.6
  • PyTorch install = 1.6.0
  • torchvision install = 0.7.0
  • CUDA 10.1
  • Apex with CUDA extension
  • Other dependencies: opencv-python, scipy, pandas, numpy

1 Pretraining

We release a demo to pretrain ResNet50 on ImageNet1K with SwAV+UOTA pretrained models.

1.1 SwAV+UOTA pretrain

To train SwAV+UOTA on a single node with 4 gpus for 200 epochs, run:

DATASET_PATH="path/to/ImageNet1K/train"
EXPERIMENT_PATH="path/to/experiment"

python -m torch.distributed.launch --nproc_per_node=4 main_uota.py \
--data_path ${DATASET_PATH} \
--nmb_crops 2 6 \
--size_crops 224 96 \
--min_scale_crops 0.14 0.05 \
--max_scale_crops 1. 0.14 \
--crops_for_assign 0 1 \
--use_pil_blur true \
--epochs 200 \
--warmup_epochs 0 \
--batch_size 64 \
--base_lr 0.6 \
--final_lr 0.0006 \
--uota_tau 350. \
--epoch_uota_starts 100 \
--wd 0.000001 \
--use_fp16 true \
--dist_url "tcp://localhost:40000" \
--arch uota_r50 \
--sync_bn pytorch \
--dump_path ${EXPERIMENT_PATH}

2 Linear Evaluation

To train a linear classifier on frozen features out of deep network pretrained via various self-supervised pretraining methods, run:

DATASET_PATH="path/to/ImageNet1K"
EXPERIMENT_PATH="path/to/experiment"
LINCLS_PATH="path/to/lincls"

python -m torch.distributed.launch --nproc_per_node=4 eval_linear.py \
--data_path ${DATASET_PATH} \
--arch resnet50 \
--lr 1.2 \
--dump_path ${LINCLS_PATH} \
--pretrained ${EXPERIMENT_PATH}/swav_uota_r50_e200_pretrained.pth \
--batch_size 64 \
--num_classes 100 \

3 Results

To compare with SwAV fairly, we provide a SwAV+UOTA model with ResNet-50 architecture pretrained on ImageNet1K for 200 epochs, and release the pretrained model and the linear classier.

method epochs batch-size multi-crop ImageNet1K top-1 acc. pretrained model linear classifier
SwAV 200 256 2x224 + 6x96 72.7 / /
SwAV + UOTA 200 256 2x224 + 6x96 73.5 pretrained linear

4 Citation

@InProceedings{wang2021NeurIPS,
  title={Improving Self-supervised Learning with Automated Unsupervised Outlier Arbitration},
  author={Wang, Yu and Lin, Jingyang and Zou, Jingjing and Pan, Yingwei and Yao, Ting and Mei, Tao},
  booktitle={NeurIPS},
  year={2021},
}
You might also like...
PyTorch implementation of spectral graph ConvNets, NIPS’16
PyTorch implementation of spectral graph ConvNets, NIPS’16

Graph ConvNets in PyTorch October 15, 2017 Xavier Bresson http://www.ntu.edu.sg/home/xbresson https://github.com/xbresson https://twitter.com/xbresson

PyTorch implementation of the Value Iteration Networks (VIN) (NIPS '16 best paper)
PyTorch implementation of the Value Iteration Networks (VIN) (NIPS '16 best paper)

Value Iteration Networks in PyTorch Tamar, A., Wu, Y., Thomas, G., Levine, S., and Abbeel, P. Value Iteration Networks. Neural Information Processing

Pytorch implementation of Value Iteration Networks (NIPS 2016 best paper)
Pytorch implementation of Value Iteration Networks (NIPS 2016 best paper)

VIN: Value Iteration Networks A quick thank you A few others have released amazing related work which helped inspire and improve my own implementation

pytorch implementation of
pytorch implementation of "Contrastive Multiview Coding", "Momentum Contrast for Unsupervised Visual Representation Learning", and "Unsupervised Feature Learning via Non-Parametric Instance-level Discrimination"

Unofficial implementation: MoCo: Momentum Contrast for Unsupervised Visual Representation Learning (Paper) InsDis: Unsupervised Feature Learning via N

The official implementation of CVPR 2021 Paper: Improving Weakly Supervised Visual Grounding by Contrastive Knowledge Distillation.

Improving Weakly Supervised Visual Grounding by Contrastive Knowledge Distillation This repository is the official implementation of CVPR 2021 paper:

(JMLR'19) A Python Toolbox for Scalable Outlier Detection (Anomaly Detection)
(JMLR'19) A Python Toolbox for Scalable Outlier Detection (Anomaly Detection)

Python Outlier Detection (PyOD) Deployment & Documentation & Stats Build Status & Coverage & Maintainability & License PyOD is a comprehensive and sca

Streaming Anomaly Detection Framework in Python (Outlier Detection for Streaming Data)

Python Streaming Anomaly Detection (PySAD) PySAD is an open-source python framework for anomaly detection on streaming multivariate data. Documentatio

A gesture recognition system powered by OpenPose, k-nearest neighbours, and local outlier factor.
A gesture recognition system powered by OpenPose, k-nearest neighbours, and local outlier factor.

OpenHands OpenHands is a gesture recognition system powered by OpenPose, k-nearest neighbours, and local outlier factor. Currently the system can iden

Outlier Exposure with Confidence Control for Out-of-Distribution Detection
Outlier Exposure with Confidence Control for Out-of-Distribution Detection

OOD-detection-using-OECC This repository contains the essential code for the paper Outlier Exposure with Confidence Control for Out-of-Distribution De

Releases(v1.0.0)
Make your master artistic punk avatar through machine learning world famous paintings.

Master-art-punk Make your master artistic punk avatar through machine learning world famous paintings. 通过机器学习世界名画制作属于你的大师级艺术朋克头像 Nowadays, NFT is beco

Philipjhc 53 Dec 27, 2022
Semantic code search implementation using Tensorflow framework and the source code data from the CodeSearchNet project

Semantic Code Search Semantic code search implementation using Tensorflow framework and the source code data from the CodeSearchNet project. The model

Chen Wu 24 Nov 29, 2022
Suite of 500 procedurally-generated NLP tasks to study language model adaptability

TaskBench500 The TaskBench500 dataset and code for generating tasks. Data The TaskBench dataset is available under wget http://web.mit.edu/bzl/www/Tas

Belinda Li 20 May 17, 2022
Action Segmentation Evaluation

Reference Action Segmentation Evaluation Code This repository contains the reference code for action segmentation evaluation. If you have a bug-fix/im

5 May 22, 2022
Code for EMNLP 2021 main conference paper "Text AutoAugment: Learning Compositional Augmentation Policy for Text Classification"

Text-AutoAugment (TAA) This repository contains the code for our paper Text AutoAugment: Learning Compositional Augmentation Policy for Text Classific

LancoPKU 105 Jan 03, 2023
Session-aware Item-combination Recommendation with Transformer Network

Session-aware Item-combination Recommendation with Transformer Network 2nd place (0.39224) code and report for IEEE BigData Cup 2021 Track1 Report EDA

Tzu-Heng Lin 6 Mar 10, 2022
Code for our paper "SimCLS: A Simple Framework for Contrastive Learning of Abstractive Summarization", ACL 2021

SimCLS Code for our paper: "SimCLS: A Simple Framework for Contrastive Learning of Abstractive Summarization", ACL 2021 1. How to Install Requirements

Yixin Liu 150 Dec 12, 2022
KwaiRec: A Fully-observed Dataset for Recommender Systems (Density: Almost 100%)

KuaiRec: A Fully-observed Dataset for Recommender Systems (Density: Almost 100%) KuaiRec is a real-world dataset collected from the recommendation log

Chongming GAO (高崇铭) 70 Dec 28, 2022
ROMP: Monocular, One-stage, Regression of Multiple 3D People, ICCV21

Monocular, One-stage, Regression of Multiple 3D People ROMP, accepted by ICCV 2021, is a concise one-stage network for multi-person 3D mesh recovery f

Yu Sun 937 Jan 04, 2023
StyleGAN - Official TensorFlow Implementation

StyleGAN — Official TensorFlow Implementation Picture: These people are not real – they were produced by our generator that allows control over differ

NVIDIA Research Projects 13.1k Jan 09, 2023
This is a collection of our NAS and Vision Transformer work.

AutoML - Neural Architecture Search This is a collection of our AutoML-NAS work iRPE (NEW): Rethinking and Improving Relative Position Encoding for Vi

Microsoft 832 Jan 08, 2023
Assessing the Influence of Models on the Performance of Reinforcement Learning Algorithms applied on Continuous Control Tasks

Assessing the Influence of Models on the Performance of Reinforcement Learning Algorithms applied on Continuous Control Tasks This is the master thesi

Giacomo Arcieri 1 Mar 21, 2022
Face Mask Detector by live camera using tensorflow-keras, openCV and Python

Face Mask Detector 😷 by Live Camera Detecting masked or unmasked faces by live camera with percentange of mask occupation About Project: This an Arti

Karan Shingde 2 Apr 04, 2022
A PyTorch implementation of "Pathfinder Discovery Networks for Neural Message Passing"

A PyTorch implementation of "Pathfinder Discovery Networks for Neural Message Passing" (WebConf 2021). Abstract In this work we propose Pathfind

Benedek Rozemberczki 49 Dec 01, 2022
A U-Net combined with a variational auto-encoder that is able to learn conditional distributions over semantic segmentations.

Probabilistic U-Net + **Update** + An improved Model (the Hierarchical Probabilistic U-Net) + LIDC crops is now available. See below. Re-implementatio

Simon Kohl 498 Dec 26, 2022
Video Matting via Consistency-Regularized Graph Neural Networks

Video Matting via Consistency-Regularized Graph Neural Networks Project Page | Real Data | Paper Installation Our code has been tested on Python 3.7,

41 Dec 26, 2022
Lua-parser-lark - An out-of-box Lua parser written in Lark

An out-of-box Lua parser written in Lark Such parser handles a relaxed version o

Taine Zhao 2 Jul 19, 2022
LTR_CrossEncoder: Legal Text Retrieval Zalo AI Challenge 2021

LTR_CrossEncoder: Legal Text Retrieval Zalo AI Challenge 2021 We propose a cross encoder model (LTR_CrossEncoder) for information retrieval, re-retrie

Hieu Duong 7 Jan 12, 2022
Attentive Implicit Representation Networks (AIR-Nets)

Attentive Implicit Representation Networks (AIR-Nets) Preprint | Supplementary | Accepted at the International Conference on 3D Vision (3DV) teaser.mo

29 Dec 07, 2022
R interface to fast.ai

R interface to fastai The fastai package provides R wrappers to fastai. The fastai library simplifies training fast and accurate neural nets using mod

113 Dec 20, 2022