Fuzzing JavaScript Engines with Aspect-preserving Mutation

Related tags

Deep LearningDIE
Overview

DIE

Repository for "Fuzzing JavaScript Engines with Aspect-preserving Mutation" (in S&P'20). You can check the paper for technical details.

Environment

Tested on Ubuntu 18.04 with following environment.

  • Python v3.6.10
  • npm v6.14.6
  • n v6.7.0

General Setup

For nodejs and npm,

$ sudo apt-get -y install npm
$ sudo npm install -g n
$ sudo n stable

For redis-server,

$ sudo apt install redis-server

we choose clang-6.0 to compile afl and browsers smoothly.

$ sudo apt-get -y install clang-6.0

DIE Setup

To setup environment for AFL,

$ cd fuzz/scripts
$ sudo ./prepare.sh

To compile whole project,

$ ./compile.sh

Server Setup

  • Make Corpus Directory (We used Die-corpus as corpus)
$ git clone https://github.com/sslab-gatech/DIE-corpus.git
$ python3 ./fuzz/scripts/make_initial_corpus.py ./DIE-corpus ./corpus
  • Make ssh-tunnel for connection with redis-server
$ ./fuzz/scripts/redis.py
  • Dry run with corpus
$ ./fuzz/scripts/populate.sh [target binary path] [path of DIE-corpus dir] [target js engine (ch/jsc/v8/ffx)]
# Example
$ ./fuzz/scripts/populate.sh ~/ch ./DIE-corpus ch

It's done! Your corpus is well executed and the data should be located on redis-server.

Tips

To check the redis-data,

$ redis-cli -p 9000
127.0.0.1:9000> keys *

If the result contains "crashBitmap", "crashQueue", "pathBitmap", "newPathsQueue" keys, the fuzzer was well registered and executed.

Client Setup

  • Make ssh-tunnel for connection with redis-server
$ ./fuzz/scripts/redis.py
  • Usage
$ ./fuzz/scripts/run.sh [target binary path] [path of DIE-corpus dir] [target js engine (ch/jsc/v8/ffx)]
# Example
$ ./fuzz/scripts/run.sh ~/ch ./DIE-corpus ch
  • Check if it's running
$ tmux ls

You can find a session named fuzzer if it's running.

Typer

We used d8 to profile type information. So, please change d8_path in fuzz/TS/typer/typer.py before execution.

cd fuzz/TS/typer
python3 typer.py [corpus directory]

*.jsi file will be created if instrumentation works well. *.t file will be created if profiling works well.

CVEs

If you find bugs and get CVEs by running DIE, please let us know.

  • ChakraCore: CVE-2019-0609, CVE-2019-1023, CVE-2019-1300, CVE-2019-0990, CVE-2019-1092
  • JavaScriptCore: CVE-2019-8676, CVE-2019-8673, CVE-2019-8811, CVE-2019-8816
  • V8: CVE-2019-13730, CVE-2019-13764, CVE-2020-6382

Contacts

Citation

@inproceedings{park:die,
  title        = {{Fuzzing JavaScript Engines with Aspect-preserving Mutation}},
  author       = {Soyeon Park and Wen Xu and Insu Yun and Daehee Jang and Taesoo Kim},
  booktitle    = {Proceedings of the 41st IEEE Symposium on Security and Privacy (Oakland)},
  month        = may,
  year         = 2020,
  address      = {San Francisco, CA},
}
Owner
gts3.org ([email protected])
https://gts3.org
gts3.org (<a href=[email protected])">
HDMapNet: A Local Semantic Map Learning and Evaluation Framework

HDMapNet_devkit Devkit for HDMapNet. HDMapNet: A Local Semantic Map Learning and Evaluation Framework Qi Li, Yue Wang, Yilun Wang, Hang Zhao [Paper] [

Tsinghua MARS Lab 421 Jan 04, 2023
Finding an Unsupervised Image Segmenter in each of your Deep Generative Models

Finding an Unsupervised Image Segmenter in each of your Deep Generative Models Description Recent research has shown that numerous human-interpretable

Luke Melas-Kyriazi 61 Oct 17, 2022
[ICCV 2021 Oral] NerfingMVS: Guided Optimization of Neural Radiance Fields for Indoor Multi-view Stereo

NerfingMVS Project Page | Paper | Video | Data NerfingMVS: Guided Optimization of Neural Radiance Fields for Indoor Multi-view Stereo Yi Wei, Shaohui

Yi Wei 369 Dec 24, 2022
KoCLIP: Korean port of OpenAI CLIP, in Flax

KoCLIP This repository contains code for KoCLIP, a Korean port of OpenAI's CLIP. This project was conducted as part of Hugging Face's Flax/JAX communi

Jake Tae 100 Jan 02, 2023
Gray Zone Assessment

Gray Zone Assessment Get started Clone github repository git clone https://github.com/andreanne-lemay/gray_zone_assessment.git Build docker image dock

1 Jan 08, 2022
A Novel Incremental Learning Driven Instance Segmentation Framework to Recognize Highly Cluttered Instances of the Contraband Items

A Novel Incremental Learning Driven Instance Segmentation Framework to Recognize Highly Cluttered Instances of the Contraband Items This repository co

Taimur Hassan 3 Mar 16, 2022
TransMIL: Transformer based Correlated Multiple Instance Learning for Whole Slide Image Classification

TransMIL: Transformer based Correlated Multiple Instance Learning for Whole Slide Image Classification [NeurIPS 2021] Abstract Multiple instance learn

132 Dec 30, 2022
Code and datasets for TPAMI 2021

SkeletonNet This repository constains the codes and ShapeNetV1-Surface-Skeleton,ShapNetV1-SkeletalVolume and 2d image datasets ShapeNetRendering. Plea

34 Aug 15, 2022
A script that trains a model to recognize handwritten digits using the MNIST data set.

handwritten-digits-recognition A script that trains a model to recognize handwritten digits using the MNIST data set. Then it loads external files and

Hamza Sayih 1 Oct 30, 2021
Minimalistic PyTorch training loop

Backbone for PyTorch training loop Will try to keep it minimalistic. pip install back from back import Bone Features Progress bar Checkpoints saving/l

Kashin 4 Jan 16, 2020
traiNNer is an open source image and video restoration (super-resolution, denoising, deblurring and others) and image to image translation toolbox based on PyTorch.

traiNNer traiNNer is an open source image and video restoration (super-resolution, denoising, deblurring and others) and image to image translation to

202 Jan 04, 2023
Official PyTorch implementation of Synergies Between Affordance and Geometry: 6-DoF Grasp Detection via Implicit Representations

Synergies Between Affordance and Geometry: 6-DoF Grasp Detection via Implicit Representations Zhenyu Jiang, Yifeng Zhu, Maxwell Svetlik, Kuan Fang, Yu

UT-Austin Robot Perception and Learning Lab 63 Jan 03, 2023
Top #1 Submission code for the first https://alphamev.ai MEV competition with best AUC (0.9893) and MSE (0.0982).

alphamev-winning-submission Top #1 Submission code for the first alphamev MEV competition with best AUC (0.9893) and MSE (0.0982). The code won't run

70 Oct 29, 2022
MPI Interest Group on Algorithms on 1st semester 2021

MPI Algorithms Interest Group Introduction Lecturer: Steve Yan Location: TBA Time Schedule: TBA Semester: 1 Useful URLs Typora: https://typora.io Goog

Ex10si0n 13 Sep 08, 2022
Time Series Forecasting with Temporal Fusion Transformer in Pytorch

Forecasting with the Temporal Fusion Transformer Multi-horizon forecasting often contains a complex mix of inputs – including static (i.e. time-invari

Nicolás Fornasari 6 Jan 24, 2022
Constrained Logistic Regression - How to apply specific constraints to logistic regression's coefficients

Constrained Logistic Regression Sample implementation of constructing a logistic regression with given ranges on each of the feature's coefficients (v

1 Dec 29, 2021
A Closer Look at Reference Learning for Fourier Phase Retrieval

A Closer Look at Reference Learning for Fourier Phase Retrieval This repository contains code for our NeurIPS 2021 Workshop on Deep Learning and Inver

Tobias Uelwer 1 Oct 28, 2021
Fast methods to work with hydro- and topography data in pure Python.

PyFlwDir Intro PyFlwDir contains a series of methods to work with gridded DEM and flow direction datasets, which are key to many workflows in many ear

Deltares 27 Dec 07, 2022
Production First and Production Ready End-to-End Speech Recognition Toolkit

WeNet 中文版 Discussions | Docs | Papers | Runtime (x86) | Runtime (android) | Pretrained Models We share neural Net together. The main motivation of WeN

2.7k Jan 04, 2023
Pytorch cuda extension of grid_sample1d

Grid Sample 1d pytorch cuda extension of grid sample 1d. Since pytorch only supports grid sample 2d/3d, I extend the 1d version for efficiency. The fo

lyricpoem 24 Dec 03, 2022