Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classification (NeurIPS 2021)

Overview

Graph Posterior Network

This is the official code repository to the paper

Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classification
Maximilian Stadler, Bertrand Charpentier, Simon Geisler, Daniel Zügner, Stephan Günnemann
Conference on Neural Information Processing Systems (NeurIPS) 2021.

[Paper]|Video - coming soon]

Diagram

Installation

We recommend running this code with its dependencies in a conda enviroment. To begin with, create a new conda environment with all the necessary dependencies assuming that you are in the root directory of this project:

conda env create -f gpn_environment.yml python==3.8 --force

Since the code is packaged, you will also have to setup the code accordingly. Assuming that you are in the root directory of this project, run:

conda activate gpn
pip3 install -e .

Data

Since we rely on published datasets from the Torch-Geometric package, you don't have to download datasets manually. When you run experiments on supported datasets, those will be downloaded and placed in the corresponding data directories. You can run the following datasets

  • CoraML
  • CiteSeer
  • PubMed
  • AmazonPhotos
  • AmazonComputers
  • CoauthorCS
  • CoauthorPhysics

Running Experiments

The experimental setup builds upon Sacred and configuring experiments in .yamlfiles. We will provide configurations

  • for vanilla node classification
  • leave-out-class experiments
  • experiments with isolated node perturbations
  • experiments for feature shifts
  • experiments for edge shifts

with a default fraction of perturbed nodes of 10%. We provide them for the smaller datasets (i.e. all except ogbn-arxiv) for hidden dimensions H=10 and H=16.

The main experimental script is train_and_eval.py. Assuming that you are in the root directory of this project for all further commands, you can run experiments with

Vanilla Node Classification

For the vanilla classification on the CoraML dataset with a hidden dimension of 16 or 10 respectively, run

python3 train_and_eval.py with configs/gpn/classification_gpn_16.yaml data.dataset=CoraML
python3 train_and_eval.py with configs/gpn/classification_gpn_10.yaml data.dataset=CoraML

If you have GPU-devices availale on your system, experiments will run on device 0 on default. If no CUDA-devices can be found, the code will revert back to running only on CPUs. Runs will produce assets per default. Also note that for running experiments for graphs under perturbations, you will have to run the corresponding vanilla classification experiment first.

Options for Feature Shifts

We consider random features from Unit Gaussian Distribution (normal) and from a Bernoulli Distribution (bernoulli_0.5). When using the configuration ood_features, you can change those settings (key ood_perturbation_type) in the command line together with the fraction of perturbed nodes (key ood_budget_per_graph) or in the corresponding configurations files, for example as

python3 train_and_eval.py with configs/gpn/ood_features_gpn_16.yaml data.dataset=CoraML data.ood_perturbation_type=normal data.ood_budget_per_graph=0.025
python3 train_and_eval.py with configs/gpn/ood_features_gpn_16.yaml data.dataset=CoraML data.ood_perturbation_type=bernoulli_0.5 data.ood_budget_per_graph=0.025

For experiments considering perturbations in an isolated fashion, this applies accordingly but without the fraction of perturbed nodes, e.g.

python3 train_and_eval.py with configs/gpn/ood_isolated_gpn_16.yaml data.dataset=CoraML data.ood_perturbation_type=normal
python3 train_and_eval.py with configs/gpn/ood_isolated_gpn_16.yaml data.dataset=CoraML data.ood_perturbation_type=bernoulli_0.5

Options for Edge Shifts

We consider random edge perturbations and the global and untargeted DICE attack. Those attacks can be set with the key ood_type which can be either set to random_attack_dice or random_edge_perturbations. As above, those settings can be changed in the command line or in the corresponding configuration files. While the key ood_budget_per_graph refers to the fraction of perturbed nodes in the paragraph above, it describes the fraction of perturbed edges in this case.

python3 train_and_eval.py with configs/gpn/ood_features_gpn_16.yaml data.dataset=CoraML data.ood_type=random_attack_dice data.ood_budget_per_graph=0.025
python3 train_and_eval.py with configs/gpn/ood_features_gpn_16.yaml data.dataset=CoraML data.ood_type=random_edge_perturbations data.ood_budget_per_graph=0.025

Further Options

With the settings above, you can reproduce our experimental results. If you want to change different architectural settings, simply change the corresponding keys in the configuration files with most of them being self-explanatory.

Structure

If you want to have a detailed look at our code, we give a brief overview of our code structure.

  • configs: directory for model configurations
  • data: directory for datasets
  • gpn: source code
    • gpn.data: code related to loading datasets and creating ID and OOD datasets
    • gpn.distributions: code related to custom distributions similar to torch.distributions
    • experiments: main routines for running experiments, i.e. loading configs, setting up datasets and models, training and evaluation
    • gpn.layers: custom layers
    • gpn.models: implementation of reference models and Graph Posterior Network (+ablated models)
    • gpn.nn: training related utilities like losses, metrics, or training engines
    • gpn.utils: general utility code
  • saved_experiments: directory for saved models
  • train_and_eval.py: main script for training & evaluation
  • gpn_qualitative_evaluation.ipynb: jupyter notebook which evaluates the results from Graph Posterior Network in a qualitative fashion

Note that we provide the implementations of most of our used reference models. Our main Graph Posterior Network model can be found in gpn.models.gpn_base.py. Ablated models can be found in a similar fashion, i.e. PostNet in gpn.models.gpn_postnet.py, PostNet+diffusion in gpn.models.gpn_postnet_diff.py and the model diffusiong log-beta scores in gpn.models.gpn_log_beta.py.

We provide all basic configurations for reference models in configs/reference. Note that some models have dependencies with others, e.g. running classification_gcn_dropout.yaml or classification_gcn_energy.yaml would require training the underlying GCN first by running classification_gcn.yaml first, running classification_gcn_ensemble.yaml would require training 10 GCNs first with init_no in 1...10, and running classification_sgcn.yaml (GKDE-GCN) would require training the teacher-GCN first by running classification_gcn.yaml and computing the kernel values by running classification_gdk.yaml first.

Cite

Please cite our paper if you use the model or this code in your own work.

@incollection{graph-postnet,
title={Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classification},
author={Stadler, Maximilian and Charpentier, Bertrand and Geisler, Simon and Z{\"u}gner, Daniel and G{\"u}nnemann, Stephan},
booktitle = {Advances in Neural Information Processing Systems},
volume = {34},
publisher = {Curran Associates, Inc.},
year = {2021}
}
Super-BPD: Super Boundary-to-Pixel Direction for Fast Image Segmentation (CVPR 2020)

Super-BPD for Fast Image Segmentation (CVPR 2020) Introduction We propose direction-based super-BPD, an alternative to superpixel, for fast generic im

189 Dec 07, 2022
The goal of the exercises below is to evaluate the candidate knowledge and problem solving expertise regarding the main development focuses for the iFood ML Platform team: MLOps and Feature Store development.

The goal of the exercises below is to evaluate the candidate knowledge and problem solving expertise regarding the main development focuses for the iFood ML Platform team: MLOps and Feature Store dev

George Rocha 0 Feb 03, 2022
Implement object segmentation on images using HOG algorithm proposed in CVPR 2005

HOG Algorithm Implementation Description HOG (Histograms of Oriented Gradients) Algorithm is an algorithm aiming to realize object segmentation (edge

Leo Hsieh 2 Mar 12, 2022
Official code repository for the EMNLP 2021 paper

Integrating Visuospatial, Linguistic and Commonsense Structure into Story Visualization PyTorch code for the EMNLP 2021 paper "Integrating Visuospatia

Adyasha Maharana 23 Dec 19, 2022
Binary Passage Retriever (BPR) - an efficient passage retriever for open-domain question answering

BPR Binary Passage Retriever (BPR) is an efficient neural retrieval model for open-domain question answering. BPR integrates a learning-to-hash techni

Studio Ousia 147 Dec 07, 2022
《K-Adapter: Infusing Knowledge into Pre-Trained Models with Adapters》(2020)

K-Adapter: Infusing Knowledge into Pre-Trained Models with Adapters This repository is the implementation of the paper "K-Adapter: Infusing Knowledge

Microsoft 118 Dec 13, 2022
Adaptive FNO transformer - official Pytorch implementation

Adaptive Fourier Neural Operators: Efficient Token Mixers for Transformers This repository contains PyTorch implementation of the Adaptive Fourier Neu

NVIDIA Research Projects 77 Dec 29, 2022
PyTorch and GPyTorch implementation of the paper "Conditioning Sparse Variational Gaussian Processes for Online Decision-making."

Conditioning Sparse Variational Gaussian Processes for Online Decision-making This repository contains a PyTorch and GPyTorch implementation of the pa

Wesley Maddox 16 Dec 08, 2022
STEM: An approach to Multi-source Domain Adaptation with Guarantees

STEM: An approach to Multi-source Domain Adaptation with Guarantees Introduction This is the official implementation of ``STEM: An approach to Multi-s

5 Dec 19, 2022
Training a Resilient Q-Network against Observational Interference, Causal Inference Q-Networks

Obs-Causal-Q-Network AAAI 2022 - Training a Resilient Q-Network against Observational Interference Preprint | Slides | Colab Demo | Environment Setup

23 Nov 21, 2022
TorchGeo is a PyTorch domain library, similar to torchvision, that provides datasets, transforms, samplers, and pre-trained models specific to geospatial data.

TorchGeo is a PyTorch domain library, similar to torchvision, that provides datasets, transforms, samplers, and pre-trained models specific to geospatial data.

Microsoft 1.3k Dec 30, 2022
This is a model to classify Vietnamese sign language using Motion history image (MHI) algorithm and CNN.

Vietnamese sign lagnuage recognition using MHI and CNN This is a model to classify Vietnamese sign language using Motion history image (MHI) algorithm

Phat Pham 3 Feb 24, 2022
[CVPR 2022 Oral] Rethinking Minimal Sufficient Representation in Contrastive Learning

Rethinking Minimal Sufficient Representation in Contrastive Learning PyTorch implementation of Rethinking Minimal Sufficient Representation in Contras

36 Nov 23, 2022
CVPR2021 Content-Aware GAN Compression

Content-Aware GAN Compression [ArXiv] Paper accepted to CVPR2021. @inproceedings{liu2021content, title = {Content-Aware GAN Compression}, auth

52 Nov 06, 2022
This is the source code of the 1st place solution for segmentation task (with Dice 90.32%) in 2021 CCF BDCI challenge.

1st place solution in CCF BDCI 2021 ULSEG challenge This is the source code of the 1st place solution for ultrasound image angioma segmentation task (

Chenxu Peng 30 Nov 22, 2022
Automatic Image Background Subtraction

Automatic Image Background Subtraction This repo contains set of scripts for automatic one-shot image background subtraction task using the following

Oleg Sémery 6 Dec 05, 2022
a reccurrent neural netowrk that when trained on a peice of text and fed a starting prompt will write its on 250 character text using LSTM layers

RNN-Playwrite a reccurrent neural netowrk that when trained on a peice of text and fed a starting prompt will write its on 250 character text using LS

Arno Barton 1 Oct 29, 2021
PPLNN is a Primitive Library for Neural Network is a high-performance deep-learning inference engine for efficient AI inferencing

PPLNN is a Primitive Library for Neural Network is a high-performance deep-learning inference engine for efficient AI inferencing

943 Jan 07, 2023
Finetune SSL models for MOS prediction

Finetune SSL models for MOS prediction This is code for our paper under review for ICASSP 2022: "Generalization Ability of MOS Prediction Networks" Er

Yamagishi and Echizen Laboratories, National Institute of Informatics 32 Nov 22, 2022
Codebase for Amodal Segmentation through Out-of-Task andOut-of-Distribution Generalization with a Bayesian Model

Codebase for Amodal Segmentation through Out-of-Task andOut-of-Distribution Generalization with a Bayesian Model

Yihong Sun 12 Nov 15, 2022