This is the source code of RPG (Reward-Randomized Policy Gradient)

Related tags

Text Data & NLPRPG
Overview

RPG (Reward-Randomized Policy Gradient)

Zhenggang Tang*, Chao Yu*, Boyuan Chen, Huazhe Xu, Xiaolong Wang, Fei Fang, Simon Shaolei Du, Yu Wang, Yi Wu (* equal contribution)

Website: https://sites.google.com/view/staghuntrpg

This is the source code for RPG (Reward-Randomized Policy Gradient), which is proposed in the paper "Discovering Diverse Multi-agent Strategic Behavior via Reward Randomization"(https://arxiv.org/abs/2103.04564).

1. Supported environments

1.1 Agar.io

Agar is a popular multi-player online game. Players control one or more cells in a Petri dish. The goal is to gain as much mass as possible by eating cells smaller than the player's cell while avoiding being eaten by larger ones. Larger cells move slower. Each player starts with one cell but can split a sufficiently large cell into two, allowing them to control multiple cells. The control is performed by mouse motion: all the cells of a player move towards the mouse position.

We transform the Free-For-All (FFA) mode of Agar (https://agar.io/) into an Reinforcement Learning (RL) environment and we believe it can be utilized as a new Multi-agent RL testbed for a wide range of problems, such as cooperation, team formation, intention modeling, etc. If you want to use Agar.io as your testbed, welcome to visit the agar repository: https://github.com/staghuntrpg/agar.

1.2 Grid World

  • Monster-Hunt In Monster-Hunt, there is a monster and two apples. The monster keeps moving towards its closest agent while apples are static. When a single agent meets the monster, it losses a penalty of 2; if two agents catch the monster at the same time, they both earn a bonus of 5. Eating an apple always gives an agent a bonus of 2. Whenever an apple is eaten or the monster meets an agent, the apple or the monster will respawn randomly. The monster may move over the apple during the chase, in this case, the agent will gain the sum of points if it catches the monster and the apple exactly.

  • Escalation In Escalation, two agents appear randomly and one grid lights up at the initialization. If two agents step on the lit grid simultaneously, each agent can gain 1 point, and the lit grid will go out with an adjacent grid lighting up. Both agents can gain 1 point again if they step on the next lit grid together. But if one agent steps off the path, the other agent will lose 0.9L points, where L is the current length of stepping together, and the game is over. Another option is that two agents choose to step off the path simultaneously, neither agent will be punished, and the game continues.

2. Usage

git clone https://github.com/staghuntrpg/RPG.git --recursive

Tips: Please don't forget the --recursive in the command, or else you will not have Agar.io environment in your fold.

This repository is separated into two folds, GridWorld and Agar, corresponding to the environments used in the paper "Discovering Diverse Multi-agent Strategic Behavior via Reward Randomization". The installation&training instructions can be found in the subfolders of each environment.

3. Publication

If you find this repository useful, please cite our paper:

@misc{tang2021discovering,
      title={Discovering Diverse Multi-Agent Strategic Behavior via Reward Randomization}, 
      author={Zhenggang Tang and Chao Yu and Boyuan Chen and Huazhe Xu and Xiaolong Wang and Fei Fang and Simon Du and Yu Wang and Yi Wu},
      year={2021},
      eprint={2103.04564},
      archivePrefix={arXiv},
      primaryClass={cs.AI}
}
ConvBERT-Prod

ConvBERT 目录 0. 仓库结构 1. 简介 2. 数据集和复现精度 3. 准备数据与环境 3.1 准备环境 3.2 准备数据 3.3 准备模型 4. 开始使用 4.1 模型训练 4.2 模型评估 4.3 模型预测 5. 模型推理部署 5.1 基于Inference的推理 5.2 基于Serv

yujun 7 Apr 08, 2022
Implementation of legal QA system based on SentenceKoBART

LegalQA using SentenceKoBART Implementation of legal QA system based on SentenceKoBART How to train SentenceKoBART Based on Neural Search Engine Jina

Heewon Jeon(gogamza) 75 Dec 27, 2022
Chinese Pre-Trained Language Models (CPM-LM) Version-I

CPM-Generate 为了促进中文自然语言处理研究的发展,本项目提供了 CPM-LM (2.6B) 模型的文本生成代码,可用于文本生成的本地测试,并以此为基础进一步研究零次学习/少次学习等场景。[项目首页] [模型下载] [技术报告] 若您想使用CPM-1进行推理,我们建议使用高效推理工具BMI

Tsinghua AI 1.4k Jan 03, 2023
DANeS is an open-source E-newspaper dataset by collaboration between DATASET JSC (dataset.vn) and AIV Group (aivgroup.vn)

DANeS - Open-source E-newspaper dataset Source: Technology vector created by macrovector - www.freepik.com. DANeS is an open-source E-newspaper datase

DATASET .JSC 64 Aug 17, 2022
Natural Language Processing Tasks and Examples.

Natural Language Processing Tasks and Examples With the advancement of A.I. technology in recent years, natural language processing technology has bee

Soohwan Kim 53 Dec 20, 2022
Implementation of Natural Language Code Search in the project CodeBERT: A Pre-Trained Model for Programming and Natural Languages.

CodeBERT-Implementation In this repo we have replicated the paper CodeBERT: A Pre-Trained Model for Programming and Natural Languages. We are interest

Tanuj Sur 4 Jul 01, 2022
👄 The most accurate natural language detection library for Python, suitable for long and short text alike

1. What does this library do? Its task is simple: It tells you which language some provided textual data is written in. This is very useful as a prepr

Peter M. Stahl 334 Dec 30, 2022
A benchmark for evaluation and comparison of various NLP tasks in Persian language.

Persian NLP Benchmark The repository aims to track existing natural language processing models and evaluate their performance on well-known datasets.

Mofid AI 68 Dec 19, 2022
A telegram bot to translate 100+ Languages

🔥 GOOGLE TRANSLATER 🔥 The owner would not be responsible for any kind of bans due to the bot. • ⚡ INSTALLING ⚡ • • 🔰 Deploy To Railway 🔰 • • ✅ OFF

Aɴᴋɪᴛ Kᴜᴍᴀʀ 5 Dec 20, 2021
☀️ Measuring the accuracy of BBC weather forecasts in Honolulu, USA

Accuracy of BBC Weather forecasts for Honolulu This repository records the forecasts made by BBC Weather for the city of Honolulu, USA. Essentially, t

Max Halford 12 Oct 15, 2022
Pytorch implementation of Tacotron

Tacotron-pytorch A pytorch implementation of Tacotron: A Fully End-to-End Text-To-Speech Synthesis Model. Requirements Install python 3 Install pytorc

soobin seo 203 Dec 02, 2022
Sample data associated with the Aurora-BP study

The Aurora-BP Study and Dataset This repository contains sample code, sample data, and explanatory information for working with the Aurora-BP dataset

Microsoft 16 Dec 12, 2022
Reformer, the efficient Transformer, in Pytorch

Reformer, the Efficient Transformer, in Pytorch This is a Pytorch implementation of Reformer https://openreview.net/pdf?id=rkgNKkHtvB It includes LSH

Phil Wang 1.8k Dec 30, 2022
Plugin repository for Macast

Macast-plugins Plugin repository for Macast. How to use third-party player plugin Download Macast from GitHub Release. Download the plugin you want fr

109 Jan 04, 2023
Blazing fast language detection using fastText model

Luga A blazing fast language detection using fastText's language models Luga is a Swahili word for language. fastText provides a blazing fast language

Prayson Wilfred Daniel 18 Dec 20, 2022
Input english text, then translate it between languages n times using the Deep Translator Python Library.

mass-translator About Input english text, then translate it between languages n times using the Deep Translator Python Library. How to Use Install dep

2 Mar 04, 2022
Hierarchical unsupervised and semi-supervised topic models for sparse count data with CorEx

Anchored CorEx: Hierarchical Topic Modeling with Minimal Domain Knowledge Correlation Explanation (CorEx) is a topic model that yields rich topics tha

Greg Ver Steeg 592 Dec 18, 2022
Code for paper "Role-oriented Network Embedding Based on Adversarial Learning between Higher-order and Local Features"

Role-oriented Network Embedding Based on Adversarial Learning between Higher-order and Local Features Train python main.py --dataset brazil-flights C

wang zhang 0 Jun 28, 2022
ProteinBERT is a universal protein language model pretrained on ~106M proteins from the UniRef90 dataset.

ProteinBERT is a universal protein language model pretrained on ~106M proteins from the UniRef90 dataset. Through its Python API, the pretrained model can be fine-tuned on any protein-related task in

241 Jan 04, 2023
Code and data accompanying Natural Language Processing with PyTorch

Natural Language Processing with PyTorch Build Intelligent Language Applications Using Deep Learning By Delip Rao and Brian McMahan Welcome. This is a

Joostware 1.8k Jan 01, 2023