This repository hosts the code for Stanford Pupper and Stanford Woofer, Raspberry Pi-based quadruped robots that can trot, walk, and jump.

Overview

Stanford Quadruped

Overview

This repository hosts the code for Stanford Pupper and Stanford Woofer, Raspberry Pi-based quadruped robots that can trot, walk, and jump.

Pupper CC Max Morse

Video of pupper in action: https://youtu.be/NIjodHA78UE

Project page: https://stanfordstudentrobotics.org/pupper

Documentation & build guide: https://pupper.readthedocs.io/en/latest/

How it works

Overview diagram The main program is run_robot.py which is located in this directory. The robot code is run as a loop, with a joystick interface, a controller, and a hardware interface orchestrating the behavior.

The joystick interface is responsible for reading joystick inputs from a UDP socket and converting them into a generic robot command type. A separate program, joystick.py, publishes these UDP messages, and is responsible for reading inputs from the PS4 controller over bluetooth. The controller does the bulk of the work, switching between states (trot, walk, rest, etc) and generating servo position targets. A detailed model of the controller is shown below. The third component of the code, the hardware interface, converts the position targets from the controller into PWM duty cycles, which it then passes to a Python binding to pigpiod, which then generates PWM signals in software and sends these signals to the motors attached to the Raspberry Pi. Controller diagram This diagram shows a breakdown of the robot controller. Inside, you can see four primary components: a gait scheduler (also called gait controller), a stance controller, a swing controller, and an inverse kinematics model.

The gait scheduler is responsible for planning which feet should be on the ground (stance) and which should be moving forward to the next step (swing) at any given time. In a trot for example, the diagonal pairs of legs move in sync and take turns between stance and swing. As shown in the diagram, the gait scheduler can be thought of as a conductor for each leg, switching it between stance and swing as time progresses.

The stance controller controls the feet on the ground, and is actually quite simple. It looks at the desired robot velocity, and then generates a body-relative target velocity for these stance feet that is in the opposite direction as the desired velocity. It also incorporates turning, in which case it rotates the feet relative to the body in the opposite direction as the desired body rotation.

The swing controller picks up the feet that just finished their stance phase, and brings them to their next touchdown location. The touchdown locations are selected so that the foot moves the same distance forward in swing as it does backwards in stance. For example, if in stance phase the feet move backwards at -0.4m/s (to achieve a body velocity of +0.4m/s) and the stance phase is 0.5 seconds long, then we know the feet will have moved backwards -0.20m. The swing controller will then move the feet forwards 0.20m to put the foot back in its starting place. You can imagine that if the swing controller only put the leg forward 0.15m, then every step the foot would lag more and more behind the body by -0.05m.

Both the stance and swing controllers generate target positions for the feet in cartesian coordinates relative the body center of mass. It's convenient to work in cartesian coordinates for the stance and swing planning, but we now need to convert them to motor angles. This is done by using an inverse kinematics model, which maps between cartesian body coordinates and motor angles. These motor angles, also called joint angles, are then populated into the state variable and returned by the model.

How to Build Pupper

Main documentation: https://pupper.readthedocs.io/en/latest/

You can find the bill of materials, pre-made kit purchasing options, assembly instructions, software installation, etc at this website.

Help

Owner
Stanford Student Robotics
Stanford Student Robotics
My self-hosting infrastructure, fully automated from empty disk to operating services

Khue's Homelab Current status: ALPHA This project utilizes Infrastructure as Code to automate provisioning, operating, and updating self-hosted servic

Khue Doan 6.4k Dec 31, 2022
ESP32 recording button presses, and serving webpage that graphs the numbers over time.

ESP32-IoT-button-graph-test ESP32 recording button presses, and serving webpage via webSockets in order to graph the responses. The objective was to t

f-caro 1 Nov 30, 2021
Интеграция Home Assistant с ЛК "Интер РАО"

ЕЛК ЖКХ «Интер РАО» для Home Assistant Предоставление информации о текущем состоянии ваших аккаунтов в ЕЛК ЖКХ. Введение @ TODO @ Установка Посредство

Alexander Ryazanov 27 Nov 05, 2022
BMP180 sensor driver for Home Assistant used in Raspberry Pi

BMP180 sensor driver for Home Assistant used in Raspberry Pi Custom component BMP180 sensor for Home Assistant. Copy the content of this directory to

747Developments 1 Dec 17, 2021
This is a python script to grab data from Zyxel NSA310 NAS and display in Home Asisstant as sensors.

Home-Assistant Python Scripts Python Scripts for Home-Assistant (http://www.home-assistant.io) Zyxel-NSA310-Home-Assistant Monitoring This is a python

6 Oct 31, 2022
Example Python code for building RPi-controlled robotic systems

RPi Example Code Example Python code for building RPi-controlled robotic systems These python files have been compiled / developed by the Neurobionics

Elliott Rouse 2 Feb 04, 2022
Monitor an EnvisaLink alarm module running Honeywell firmware, and set a Nest device to Home/Away depending on whether the alarm is Disarmed/Away.

Nestalarm Monitor an EnvisaLink alarm module running Honeywell firmware, and set a Nest device to Home/Away depending on whether the alarm is Disarmed

1 Dec 30, 2021
Technical Answers to Real-World Problems. Evolution of Watering Manually to Watering Automatically.

Automatic Watering System using Soil Moisture Sensor and RTC Timer with Arduino Technical Answers to Real-World Problems Know the plant, Grow the plan

NelakurthiSudheer 3 Jan 03, 2022
HA-Edge-Connector - HA Edge Connector For Python

HA-Edge-Connector 1. Required a. Smartthings Hub & Homeassistant must be in same

chals 21 Dec 29, 2022
A Macropad using the Raspberry Pi Pico, programmed with CircuitPython.

A Macropad using the Raspberry Pi Pico, programmed with CircuitPython.

15 Oct 14, 2022
Like htop (CPU and memory usage), but for your case LEDs. 😄

Like htop (CPU and memory usage), but for your case LEDs. 😄

Derek Anderson 3 Dec 08, 2021
A simple Picobot project implemented in Python

Python-Picobot A simple Picobot project implemented in Python About Explanation This is my first programming project. Picobot use rules.txt file which

Shayan Shiravani 0 Apr 03, 2022
Raspberry Pi Power Button - Wake/Power Off/Restart(Double Press)

Control Raspberry pi with physically attached button. Wake, Power Off, and Restart (Double Press) . Python3 script runs as a service with easy installation.

Stas Yakobov 16 Oct 22, 2022
A flexible data historian based on InfluxDB, Grafana, MQTT and more. Free, open, simple.

Kotori Telemetry data acquisition and sensor networks for humans. Documentation: https://getkotori.org/ Source Code: https://github.com/daq-tools/koto

83 Nov 26, 2022
LED effects plugin for klipper

This plugin allows Klipper to run effects and animations on addressable LEDs, such as Neopixels, WS2812 or SK6812.

Julian Schill 238 Jan 04, 2023
3d printable macropad

Pico Mpad A 3D printable macropad for automating frequently repeated actions. Hardware To build this project you need access to a 3d printer. The mode

Dmytro Panin 94 Jan 07, 2023
Quasi-static control of the centroid of quadruped robot

Quasi-static control of quadruped robot   This is a demo of the quasi-static controller for the centroid of the quadruped robot. The Quadratic Program

Junwen Cui 21 Dec 12, 2022
A simple non-official manager interface I'm using for my Raspberry Pis.

My Raspberry Pi Manager Overview I have two Raspberry Pi 4 Model B devices that I hooked up to my two TVs (one in my bedroom and the other in my new g

Christian Deacon 21 Jan 04, 2023
Code for the onshape macropad.

Onshape_Macropad Code for the onshape macropad. This is a macropad built using the Pimoroni Keybow and the KPrepublic Enclosure. pimoroni_keybow kprep

Justin Cole 1 Nov 23, 2021
Python module for controlling Broadlink RM2/3 (Pro) remote controls, A1 sensor platforms and SP2/3 smartplugs

Python module for controlling Broadlink RM2/3 (Pro) remote controls, A1 sensor platforms and SP2/3 smartplugs

Matthew Garrett 1.2k Jan 04, 2023