This project deals with a simplified version of a more general problem of Aspect Based Sentiment Analysis.

Overview

Aspect_Based_Sentiment_Extraction

Created on: 5th Jan, 2022.

This project deals with an important field of Natural Lnaguage Processing - Aspect Based Sentiment Analysis (ABSA). But the problem statement here is rather a simplified version of the more general ABSA.
Aspect-Based Sentiment analysis is a type of text analysis that categorizes opinions by aspect and identifies the sentiment related to each aspect. Aspects are important words that are of importance to a business or organization, where they want to be able to provide their customers with insights on how their customers feel about these important words.
The general ABSA problem, which is an active area of machine learning research, is about finding all the possible aspects and the corresponding sentiments associated with those aspects in a given text or a document. For example, given a sentence like “I like apples very much, but I hate kiwi”, an ideal absa system should be able to identify aspects like apples and kiwi with correct sentiments of positive and negative respectively.
But here, in the problem statement that this project deals with, an aspect word/phrase is already given from the given text, which means that our problem is rather simplified and we don’t need to worry about the complex task of identifying aspects as well in the text, at least for this problem statement that I am dealing with. In future, I will be working with the more general version of this problem, where aspects are also needed to be indentified.


A brief description of approach

This article explores the use of a pre-trained language model, BERT (Bidirectional Encoder Representaton from Transformers), for the purpose of solving the aforementioned problem. BERT offers very robust contextual embeddings which are useful to solve the variety of problems. Therefore, the sole idea here is to explore the modelling capabilities of the BERT embeddings, by making use of the sentence pair input for the aspect sentiment prediction task. The model which I came up with was able to achieve 99.40% accuracy on the training data and 96.16% accuracy on the test data.

Instructions to run and test files

Clone this repository and navigate to the project folder:
git clone https://github.com/stardust-88/Aspect_Based_Sentiment_Extraction.git
cd Aspect_Based_sentiment_Extraction

To install the dependencies:
pip3 install -r requirements.txt

To train:
Navigate to the src folder and run the below command:
python train.py

For inference:
Navigate to the src folder and run the below command:
python inference.py

Instructions for using trained model weights

I have saved my trained weights to google drive and generated the link, which can be used to download the same. This can be done through below steps.

  1. Navigate to the the models directory.
  2. When inside the models directory, run the file download_model.py: python download_model.py

So, if the user wants to do the inference using pre-trained weights, first download the weights following above two steps, then then run the inference.py script.

Results from the model

  1. Accuracy curve:

  1. Loss curve:

  1. Classification report:

  1. Confusion matrix:

Owner
Naman Rastogi
An undergraduate in Computer Science and Engineering. Trying to discover fundamental patterns with machine learning.
Naman Rastogi
JaQuAD: Japanese Question Answering Dataset

JaQuAD: Japanese Question Answering Dataset for Machine Reading Comprehension (2022, Skelter Labs)

SkelterLabs 84 Dec 27, 2022
This is a Prototype of an Ai ChatBot "Tea and Coffee Supplier" using python.

Ai-ChatBot-Python A chatbot is an intelligent system which can hold a conversation with a human using natural language in real time. Due to the rise o

1 Oct 30, 2021
German Text-To-Speech Engine using Tacotron and Griffin-Lim

jotts JoTTS is a German text-to-speech engine using tacotron and griffin-lim. The synthesizer model has been trained on my voice using Tacotron1. Due

padmalcom 6 Aug 28, 2022
Predict the spans of toxic posts that were responsible for the toxic label of the posts

toxic-spans-detection An attempt at the SemEval 2021 Task 5: Toxic Spans Detection. The Toxic Spans Detection task of SemEval2021 required participant

Ilias Antonopoulos 3 Jul 24, 2022
Sploitus - Command line search tool for sploitus.com. Think searchsploit, but with more POCs

Sploitus Command line search tool for sploitus.com. Think searchsploit, but with

watchdog2000 5 Mar 07, 2022
Easy to start. Use deep nerual network to predict the sentiment of movie review.

Easy to start. Use deep nerual network to predict the sentiment of movie review. Various methods, word2vec, tf-idf and df to generate text vectors. Various models including lstm and cov1d. Achieve f1

1 Nov 19, 2021
Python Implementation of ``Modeling the Influence of Verb Aspect on the Activation of Typical Event Locations with BERT'' (Findings of ACL: ACL 2021)

BERT-for-Surprisal Python Implementation of ``Modeling the Influence of Verb Aspect on the Activation of Typical Event Locations with BERT'' (Findings

7 Dec 05, 2022
ByT5: Towards a token-free future with pre-trained byte-to-byte models

ByT5: Towards a token-free future with pre-trained byte-to-byte models ByT5 is a tokenizer-free extension of the mT5 model. Instead of using a subword

Google Research 409 Jan 06, 2023
Code for producing Japanese GPT-2 provided by rinna Co., Ltd.

japanese-gpt2 This repository provides the code for training Japanese GPT-2 models. This code has been used for producing japanese-gpt2-medium release

rinna Co.,Ltd. 491 Jan 07, 2023
Accurately generate all possible forms of an English word e.g "election" --> "elect", "electoral", "electorate" etc.

Accurately generate all possible forms of an English word Word forms can accurately generate all possible forms of an English word. It can conjugate v

Dibya Chakravorty 570 Dec 31, 2022
Using BERT-based models for toxic span detection

SemEval 2021 Task 5: Toxic Spans Detection: Task: Link to SemEval-2021: Task 5 Toxic Span Detection is https://competitions.codalab.org/competitions/2

Ravika Nagpal 1 Jan 04, 2022
Finally decent dictionaries based on Wiktionary for your beloved eBook reader.

eBook Reader Dictionaries Finally, decent dictionaries based on Wiktionary for your beloved eBook reader. Dictionaries Catalan 🚧 Ελληνικά (help welco

Mickaël Schoentgen 163 Dec 31, 2022
Code for our paper "Mask-Align: Self-Supervised Neural Word Alignment" in ACL 2021

Mask-Align: Self-Supervised Neural Word Alignment This is the implementation of our work Mask-Align: Self-Supervised Neural Word Alignment. @inproceed

THUNLP-MT 46 Dec 15, 2022
skweak: A software toolkit for weak supervision applied to NLP tasks

Labelled data remains a scarce resource in many practical NLP scenarios. This is especially the case when working with resource-poor languages (or text domains), or when using task-specific labels wi

Norsk Regnesentral (Norwegian Computing Center) 850 Dec 28, 2022
Study German declensions (dER nettE Mann, ein nettER Mann, mit dEM nettEN Mann, ohne dEN nettEN Mann ...) Generate as many exercises as you want using the incredible power of SPACY!

Study German declensions (dER nettE Mann, ein nettER Mann, mit dEM nettEN Mann, ohne dEN nettEN Mann ...) Generate as many exercises as you want using the incredible power of SPACY!

Hans Alemão 4 Jul 20, 2022
Concept Modeling: Topic Modeling on Images and Text

Concept is a technique that leverages CLIP and BERTopic-based techniques to perform Concept Modeling on images.

Maarten Grootendorst 120 Dec 27, 2022
profile tools for pytorch nn models

nnprof Introduction nnprof is a profile tool for pytorch neural networks. Features multi profile mode: nnprof support 4 profile mode: Layer level, Ope

Feng Wang 42 Jul 09, 2022
Amazon Multilingual Counterfactual Dataset (AMCD)

Amazon Multilingual Counterfactual Dataset (AMCD)

35 Sep 20, 2022
Pytorch-Named-Entity-Recognition-with-BERT

BERT NER Use google BERT to do CoNLL-2003 NER ! Train model using Python and Inference using C++ ALBERT-TF2.0 BERT-NER-TENSORFLOW-2.0 BERT-SQuAD Requi

Kamal Raj 1.1k Dec 25, 2022
GVT is a generic translation tool for parts of text on the PC screen with Text to Speak functionality.

GVT is a generic translation tool for parts of text on the PC screen with Text to Speech functionality. I wanted to create it because the existing tools that I experimented with did not satisfy me in

Nuked 1 Aug 21, 2022