Statistics and Mathematics for Machine Learning, Deep Learning , Deep NLP

Overview

Stat4ML

Statistics and Mathematics for Machine Learning, Deep Learning , Deep NLP

This is the first course from our trio courses:

  1. Statistics Foundation for ML

https://github.com/Bellman281/Stat4ML/

  1. Introduction to Statistical Learning https://github.com/Bellman281/Intro_Statistical_Learning

  2. Advanced Statistical Learning for DL ( to be anounced)

Registration Form for cohort 2 of STAT4ML:

https://forms.gle/ZqLJLmv1K5nGVx3m7

Notes about the course:

Instructor : Omid Safarzadeh,

LinkedIn: https://www.linkedin.com/in/omidsafarzadeh/

IG : @deepdatascientists

Course Text Book: Statistical Inference 2nd Edition by George Casella (Author), Roger L. Berger (Author) :

https://www.amazon.com/Statistical-Inference-George-Casella-dp-0534243126/dp/0534243126/ref=mt_other?_encoding=UTF8&me=&qid=

Pre Requisitives

Recall from Calculus:

    Derivative
          Chain rule
    Integral
          Techniques of Integration
          Substitution
    Integration by parts

Matrix Algebra Review:

    Matrix operations
    Matrix Multiplication
       Properties of determinants
       Inverse Matrix
       Matrix Transpose
       Properties of transpose
    Partioned Matrices
    Eigenvalues and Eigenvectors
    Matrix decomposition
       LU decomposition
       Cholesky decomposition
       QR decomposition
       SVD
    Matrix Differentiation

Course 1 :

Slide 1 : Probability Theory Foundation

 Sample Space
 Probability Theory Foundation
    Axiomatic Foundations
    The Calculus of Probabilities
 Independence
 Conditional Probability
    Bayes Theorem
 Random Variables
 Probability Function
    Distribution Functions
    Density function

Slide 2: Moments

   Moments
       Expected Value
       Variance
       Covariance and Correlation
   Moment Generating Functions
       Normal mgf
   Matrix Notation for Moments

Slide 3: Distribution Functions

   Distributions
     Discrete Distribution
       Discrete Uniform Distribution
       Binomial Distribution
       Poisson Distribution
     Continuous Distribution
       Uniform Distribution
       Exponential Distribution
       Normal Distribution
       Lognormal Distribution
       Laplace Distribution
       Beta Distribution

Slide 4: Conditional and Multivariate Distributions

Joint and Marginal Distribution
Conditional Distributions and Independence
Bivariate Transformations
Hierarchical Models and Mixture Distribution
Bivariate Normal Distribution
Multivariate Distribution

Slide 5: Convergence Concepts

Random Samples
   Sums of Random Variable from a Random Sample
Inequalities
Convergence Concepts:
   Almost Sure Convergence
   Convergence in Probability
   Convergence in Distribution
The Delta Method

Slide 6: Maximum Likelihood Estimation

Maximum Likelihood Estimation
  Motivation and the Main Ideas
  Properties of the Maximum Likelihood Estimator

Slide 7: Bayesian and posterior distribution Estimation

   Computing the posterior
   Maximum likelihood estimation (MLE)
Maximum a posteriori (MAP) estimation
   Posterior mean
   MAP properties
Bayesian linear regression
Owner
Omid Safarzadeh
Deep Learning Expert, Kaggler
Omid Safarzadeh
Code for the paper "Flexible Generation of Natural Language Deductions"

Code for the paper "Flexible Generation of Natural Language Deductions"

Kaj Bostrom 12 Nov 11, 2022
[ICCV 2021] Counterfactual Attention Learning for Fine-Grained Visual Categorization and Re-identification

Counterfactual Attention Learning Created by Yongming Rao*, Guangyi Chen*, Jiwen Lu, Jie Zhou This repository contains PyTorch implementation for ICCV

Yongming Rao 89 Dec 18, 2022
We have built a Voice based Personal Assistant for people to access files hands free in their device using natural language processing.

Voice Based Personal Assistant We have built a Voice based Personal Assistant for people to access files hands free in their device using natural lang

Rushabh 2 Nov 13, 2021
Big Bird: Transformers for Longer Sequences

BigBird, is a sparse-attention based transformer which extends Transformer based models, such as BERT to much longer sequences. Moreover, BigBird comes along with a theoretical understanding of the c

Google Research 457 Dec 23, 2022
Use PaddlePaddle to reproduce the paper:mT5: A Massively Multilingual Pre-trained Text-to-Text Transformer

MT5_paddle Use PaddlePaddle to reproduce the paper:mT5: A Massively Multilingual Pre-trained Text-to-Text Transformer English | 简体中文 mT5: A Massively

2 Oct 17, 2021
Mysticbbs-rjam - rJAM splitscreen message reader for MysticBBS A46+

rJAM splitscreen message reader for MysticBBS A46+

Robbert Langezaal 4 Nov 22, 2022
STonKGs is a Sophisticated Transformer that can be jointly trained on biomedical text and knowledge graphs

STonKGs STonKGs is a Sophisticated Transformer that can be jointly trained on biomedical text and knowledge graphs. This multimodal Transformer combin

STonKGs 27 Aug 11, 2022
A natural language modeling framework based on PyTorch

Overview PyText is a deep-learning based NLP modeling framework built on PyTorch. PyText addresses the often-conflicting requirements of enabling rapi

Facebook Research 6.4k Dec 27, 2022
Trex is a tool to match semantically similar functions based on transfer learning.

Trex is a tool to match semantically similar functions based on transfer learning.

62 Dec 28, 2022
Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.

Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.

730 Jan 09, 2023
NLPIR tutorial: pretrain for IR. pre-train on raw textual corpus, fine-tune on MS MARCO Document Ranking

pretrain4ir_tutorial NLPIR tutorial: pretrain for IR. pre-train on raw textual corpus, fine-tune on MS MARCO Document Ranking 用作NLPIR实验室, Pre-training

ZYMa 12 Apr 07, 2022
PyTorch implementation of the paper: Text is no more Enough! A Benchmark for Profile-based Spoken Language Understanding

Text is no more Enough! A Benchmark for Profile-based Spoken Language Understanding This repository contains the official PyTorch implementation of th

Xiao Xu 26 Dec 14, 2022
End-to-End Speech Processing Toolkit

ESPnet: end-to-end speech processing toolkit system/pytorch ver. 1.0.1 1.1.0 1.2.0 1.3.1 1.4.0 1.5.1 1.6.0 1.7.1 1.8.1 ubuntu18/python3.8/pip ubuntu18

ESPnet 5.9k Jan 03, 2023
Pytorch implementation of Tacotron

Tacotron-pytorch A pytorch implementation of Tacotron: A Fully End-to-End Text-To-Speech Synthesis Model. Requirements Install python 3 Install pytorc

soobin seo 203 Dec 02, 2022
nlp基础任务

NLP算法 说明 此算法仓库包括文本分类、序列标注、关系抽取、文本匹配、文本相似度匹配这五个主流NLP任务,涉及到22个相关的模型算法。 框架结构 文件结构 all_models ├── Base_line │   ├── __init__.py │   ├── base_data_process.

zuxinqi 23 Sep 22, 2022
Accurately generate all possible forms of an English word e.g "election" --> "elect", "electoral", "electorate" etc.

Accurately generate all possible forms of an English word Word forms can accurately generate all possible forms of an English word. It can conjugate v

Dibya Chakravorty 570 Dec 31, 2022
A repo for materials relating to the tutorial of CS-332 NLP

CS-332-NLP A repo for materials relating to the tutorial of CS-332 NLP Contents Tutorial 1: Introduction Corpus Regular expression Tokenization Tutori

Alok singh 9 Feb 15, 2022
AI Assistant for Building Reliable, High-performing and Fair Multilingual NLP Systems

AI Assistant for Building Reliable, High-performing and Fair Multilingual NLP Systems

Microsoft 37 Nov 29, 2022
Bidirectional LSTM-CRF and ELMo for Named-Entity Recognition, Part-of-Speech Tagging and so on.

anaGo anaGo is a Python library for sequence labeling(NER, PoS Tagging,...), implemented in Keras. anaGo can solve sequence labeling tasks such as nam

Hiroki Nakayama 1.5k Dec 05, 2022
OceanScript is an Esoteric language used to encode and decode text into a formulation of characters

OceanScript is an Esoteric language used to encode and decode text into a formulation of characters - where the final result looks like waves in the ocean.