Various Algorithms for Short Text Mining

Overview

Short Text Mining in Python

CircleCI GitHub release Documentation Status Updates Python 3 pypi download stars

Introduction

This package shorttext is a Python package that facilitates supervised and unsupervised learning for short text categorization. Due to the sparseness of words and the lack of information carried in the short texts themselves, an intermediate representation of the texts and documents are needed before they are put into any classification algorithm. In this package, it facilitates various types of these representations, including topic modeling and word-embedding algorithms.

Since release 1.5.2, it runs on Python 3.9. Since release 1.5.0, support for Python 3.6 was decommissioned. Since release 1.2.4, it runs on Python 3.8. Since release 1.2.3, support for Python 3.5 was decommissioned. Since release 1.1.7, support for Python 2.7 was decommissioned. Since release 1.0.8, it runs on Python 3.7 with 'TensorFlow' being the backend for keras. Since release 1.0.7, it runs on Python 3.7 as well, but the backend for keras cannot be TensorFlow. Since release 1.0.0, shorttext runs on Python 2.7, 3.5, and 3.6.

Characteristics:

  • example data provided (including subject keywords and NIH RePORT);
  • text preprocessing;
  • pre-trained word-embedding support;
  • gensim topic models (LDA, LSI, Random Projections) and autoencoder;
  • topic model representation supported for supervised learning using scikit-learn;
  • cosine distance classification;
  • neural network classification (including ConvNet, and C-LSTM);
  • maximum entropy classification;
  • metrics of phrases differences, including soft Jaccard score (using Damerau-Levenshtein distance), and Word Mover's distance (WMD);
  • character-level sequence-to-sequence (seq2seq) learning;
  • spell correction;
  • API for word-embedding algorithm for one-time loading; and
  • Sentence encodings and similarities based on BERT.

Documentation

Documentation and tutorials for shorttext can be found here: http://shorttext.rtfd.io/.

See tutorial for how to use the package, and FAQ.

Installation

To install it, in a console, use pip.

>>> pip install -U shorttext

or, if you want the most recent development version on Github, type

>>> pip install -U git+https://github.com/stephenhky/[email protected]

Developers are advised to make sure Keras >=2 be installed. Users are advised to install the backend Tensorflow (preferred) or Theano in advance. It is desirable if Cython has been previously installed too.

See installation guide for more details.

Issues

To report any issues, go to the Issues tab of the Github page and start a thread. It is welcome for developers to submit pull requests on their own to fix any errors.

Contributors

If you would like to contribute, feel free to submit the pull requests. You can talk to me in advance through e-mails or the Issues page.

Useful Links

News

  • 07/11/2021: shorttext 1.5.3 released.
  • 07/06/2021: shorttext 1.5.2 released.
  • 04/10/2021: shorttext 1.5.1 released.
  • 04/09/2021: shorttext 1.5.0 released.
  • 02/11/2021: shorttext 1.4.8 released.
  • 01/11/2021: shorttext 1.4.7 released.
  • 01/03/2021: shorttext 1.4.6 released.
  • 12/28/2020: shorttext 1.4.5 released.
  • 12/24/2020: shorttext 1.4.4 released.
  • 11/10/2020: shorttext 1.4.3 released.
  • 10/18/2020: shorttext 1.4.2 released.
  • 09/23/2020: shorttext 1.4.1 released.
  • 09/02/2020: shorttext 1.4.0 released.
  • 07/23/2020: shorttext 1.3.0 released.
  • 06/05/2020: shorttext 1.2.6 released.
  • 05/20/2020: shorttext 1.2.5 released.
  • 05/13/2020: shorttext 1.2.4 released.
  • 04/28/2020: shorttext 1.2.3 released.
  • 04/07/2020: shorttext 1.2.2 released.
  • 03/23/2020: shorttext 1.2.1 released.
  • 03/21/2020: shorttext 1.2.0 released.
  • 12/01/2019: shorttext 1.1.6 released.
  • 09/24/2019: shorttext 1.1.5 released.
  • 07/20/2019: shorttext 1.1.4 released.
  • 07/07/2019: shorttext 1.1.3 released.
  • 06/05/2019: shorttext 1.1.2 released.
  • 04/23/2019: shorttext 1.1.1 released.
  • 03/03/2019: shorttext 1.1.0 released.
  • 02/14/2019: shorttext 1.0.8 released.
  • 01/30/2019: shorttext 1.0.7 released.
  • 01/29/2019: shorttext 1.0.6 released.
  • 01/13/2019: shorttext 1.0.5 released.
  • 10/03/2018: shorttext 1.0.4 released.
  • 08/06/2018: shorttext 1.0.3 released.
  • 07/24/2018: shorttext 1.0.2 released.
  • 07/17/2018: shorttext 1.0.1 released.
  • 07/14/2018: shorttext 1.0.0 released.
  • 06/18/2018: shorttext 0.7.2 released.
  • 05/30/2018: shorttext 0.7.1 released.
  • 05/17/2018: shorttext 0.7.0 released.
  • 02/27/2018: shorttext 0.6.0 released.
  • 01/19/2018: shorttext 0.5.11 released.
  • 01/15/2018: shorttext 0.5.10 released.
  • 12/14/2017: shorttext 0.5.9 released.
  • 11/08/2017: shorttext 0.5.8 released.
  • 10/27/2017: shorttext 0.5.7 released.
  • 10/17/2017: shorttext 0.5.6 released.
  • 09/28/2017: shorttext 0.5.5 released.
  • 09/08/2017: shorttext 0.5.4 released.
  • 09/02/2017: end of GSoC project. (Report)
  • 08/22/2017: shorttext 0.5.1 released.
  • 07/28/2017: shorttext 0.4.1 released.
  • 07/26/2017: shorttext 0.4.0 released.
  • 06/16/2017: shorttext 0.3.8 released.
  • 06/12/2017: shorttext 0.3.7 released.
  • 06/02/2017: shorttext 0.3.6 released.
  • 05/30/2017: GSoC project (Chinmaya Pancholi, with gensim)
  • 05/16/2017: shorttext 0.3.5 released.
  • 04/27/2017: shorttext 0.3.4 released.
  • 04/19/2017: shorttext 0.3.3 released.
  • 03/28/2017: shorttext 0.3.2 released.
  • 03/14/2017: shorttext 0.3.1 released.
  • 02/23/2017: shorttext 0.2.1 released.
  • 12/21/2016: shorttext 0.2.0 released.
  • 11/25/2016: shorttext 0.1.2 released.
  • 11/21/2016: shorttext 0.1.1 released.

Possible Future Updates

  • Dividing components to other packages;
  • More available corpus.
Comments
  • standalone ?

    standalone ?

    Hi. I have many questions.... :-)

    I'm a beginner for python. Is there any method to run the code standalone ?

    e.g. I trained my data. And I'd like to see the scores on terminal by classifier.score('apple') . The word 'apple' can be changed.

    Thank you regards,

    opened by chocosando 20
  • ImportError: No module named classification_exceptions

    ImportError: No module named classification_exceptions

    import shorttext

    
    ---------------------------------------------------------------------------
    ImportError                               Traceback (most recent call last)
    <ipython-input-5-cb09b3381050> in <module>()
    ----> 1 import shorttext
    
    /usr/local/lib/python2.7/dist-packages/shorttext/__init__.py in <module>()
          5 sys.path.append(thisdir)
          6 
    ----> 7 from . import utils
          8 from . import data
          9 from . import classifiers
    
    /usr/local/lib/python2.7/dist-packages/shorttext/utils/__init__.py in <module>()
          4 from . import textpreprocessing
          5 from .wordembed import load_word2vec_model
    ----> 6 from . import compactmodel_io
          7 
          8 from .textpreprocessing import spacy_tokenize as tokenize
    
    /usr/local/lib/python2.7/dist-packages/shorttext/utils/compactmodel_io.py in <module>()
         13 from functools import partial
         14 
    ---> 15 import utils.classification_exceptions as e
         16 
         17 def removedir(dir):
    
    ImportError: No module named classification_exceptions
    
    
    opened by spate141 11
  • ImportError: dlopen: cannot load any more object with static TLS

    ImportError: dlopen: cannot load any more object with static TLS

    Hi, I got the following error when i import shorttext, how shall i resolve?

    Using TensorFlow backend.

    I tensorflow/stream_executor/dso_loader.cc:128] successfully opened CUDA library libcublas.so.7.5 locally I tensorflow/stream_executor/dso_loader.cc:128] successfully opened CUDA library libcudnn.so.5 locally I tensorflow/stream_executor/dso_loader.cc:128] successfully opened CUDA library libcufft.so.7.5 locally I tensorflow/stream_executor/dso_loader.cc:128] successfully opened CUDA library libcuda.so.1 locally I tensorflow/stream_executor/dso_loader.cc:128] successfully opened CUDA library libcurand.so.7.5 locally Traceback (most recent call last): File "", line 1, in File "/usr/local/lib/python2.7/dist-packages/shorttext/init.py", line 7, in from . import utils File "/usr/local/lib/python2.7/dist-packages/shorttext/utils/init.py", line 3, in from . import gensim_corpora File "/usr/local/lib/python2.7/dist-packages/shorttext/utils/gensim_corpora.py", line 2, in from .textpreprocessing import spacy_tokenize as tokenize File "/usr/local/lib/python2.7/dist-packages/shorttext/utils/textpreprocessing.py", line 5, in import spacy File "/usr/local/lib/python2.7/dist-packages/spacy/init.py", line 8, in from . import en, de, zh, es, it, hu, fr, pt, nl, sv, fi, bn, he File "/usr/local/lib/python2.7/dist-packages/spacy/en/init.py", line 4, in from ..language import Language File "/usr/local/lib/python2.7/dist-packages/spacy/language.py", line 12, in from .syntax.parser import get_templates ImportError: dlopen: cannot load any more object with static TLS

    opened by kenyeung128 8
  • extend score to take an array of shorttext

    extend score to take an array of shorttext

    Currently, score takes only a single input and as a result, the method is very slow if you are trying to classify thousands of examples. Is there a way you can generate scores for 10K+ samples at the same time.

    opened by rja172 6
  • Importing problem (not installation) over google colab

    Importing problem (not installation) over google colab

    I am experimenting with the library for the first time. The installation was successful and didn't need any extra steps. however when I started importing the library I got the following error related to keras:

    /usr/local/lib/python3.7/dist-packages/shorttext/generators/bow/AutoEncodingTopicModeling.py in () 8 from gensim.corpora import Dictionary 9 from keras import Input ---> 10 from keras.engine import Model 11 from keras.layers import Dense 12 from scipy.spatial.distance import cosine

    ImportError: cannot import name 'Model' from 'keras.engine' (/usr/local/lib/python3.7/dist-packages/keras/engine/init.py)

    I tried to install keras separately but no improvement. any suggestions would be appreciated.

    opened by yomnamahmoud 6
  • RuntimeWarning: overflow encountered in exp2 topicmodeler.train

    RuntimeWarning: overflow encountered in exp2 topicmodeler.train

    Code: trainclassdict = shorttext.data.nihreports(sample_size=None) topicmodeler = shorttext.generators.LDAModeler() topicmodeler.train(trainclassdict, 128) Error message: /lib/python2.7/site-packages/gensim/models/ldamodel.py:535: RuntimeWarning: overflow encountered in exp2 perwordbound, np.exp2(-perwordbound), len(chunk), corpus_words

    Then the results are variable for topicmodeler.retrieve_topicvec('stem cell research')

    opened by dbonner 6
  • Remove negation terms from stopwords.txt

    Remove negation terms from stopwords.txt

    I noticed that stopwords.txt includes negation terms such as "no" and "not". These terms revert the meaning of a word or a sentence, so they should be preserved in the text data. For example, "not a good idea" would become "good idea" after stopword removal. Therefore, I recommend removing negation terms from the stopword list. Thanks!

    opened by star1327p 5
  • Input to shorttext.generators.LDAModeler()

    Input to shorttext.generators.LDAModeler()

    I was wondering what should be the format of data as input for:

    shorttext.generators.LDAModeler() topicmodeler.train(data, 100)

    Can I feed it with a pandas column? Or it should be in a dictionary format? If a dictionary, what should be the keys? I have a large set of tweets.

    opened by malizad 5
  • from shorttext.classifiers import MaxEntClassifier is it regression?

    from shorttext.classifiers import MaxEntClassifier is it regression?

    seems to be maxent is a fancy word for regression or you do have something special in your maxent? https://www.quora.com/What-is-the-relationship-between-Log-Linear-model-MaxEnt-model-and-Logistic-Regression or https://en.wikipedia.org/wiki/Multinomial_logistic_regression

    Multinomial logistic regression is known by a variety of other names, including polytomous LR,[2][3] multiclass LR, softmax regression, multinomial logit, the maximum entropy (MaxEnt) classifier, and the conditional maximum entropy model.[4]
    
    opened by Sandy4321 5
  • No Python 3.6 support with SciPy 1.6

    No Python 3.6 support with SciPy 1.6

    opened by Dobatymo 4
  • Data nihreports not available anymore

    Data nihreports not available anymore

    Some datasets are not available anymore.

    For example the following: nihtraindata = shorttext.data.nihreports(sample_size=None)

    Error message:

    Downloading...
    Source:  http://storage.googleapis.com/pyshorttext/nih_grant_public/nih_full.csv.zip
    Failure to download file!
    (<class 'urllib.error.HTTPError'>, <HTTPError 404: 'Not Found'>, <traceback object at 0x7f09063ed788>)
    

    Python error:

    HTTPError: HTTP Error 404: Not Found
    
    During handling of the above exception, another exception occurred:
    

    When opening the link the same error appears:

    image

    opened by AlessandroVol23 4
Releases(1.5.8)
Owner
Kwan-Yuet "Stephen" Ho
quantitative research, machine learning, data science, text mining, physics
Kwan-Yuet
An assignment from my grad-level data mining course demonstrating some experience with NLP/neural networks/Pytorch

NLP-Pytorch-Assignment An assignment from my grad-level data mining course (before I started personal projects) demonstrating some experience with NLP

David Thorne 0 Feb 06, 2022
A Python script that compares files in directories

compare-files A Python script that compares files in different directories, this is similar to the command filecmp.cmp(f1, f2). I made this script in

Colvin 1 Oct 15, 2021
Smart discord chatbot integrated with Dialogflow

academic-NLP-chatbot Smart discord chatbot integrated with Dialogflow to interact with students naturally and manage different classes in a school. De

Tom Huynh 5 Oct 24, 2022
Persian-lexicon - A lexicon of 70K unique Persian (Farsi) words

Persian Lexicon This repo uses Uppsala Persian Corpus (UPC) to construct a lexic

Saman Vaisipour 7 Apr 01, 2022
This is the main repository of open-sourced speech technology by Huawei Noah's Ark Lab.

Speech-Backbones This is the main repository of open-sourced speech technology by Huawei Noah's Ark Lab. Grad-TTS Official implementation of the Grad-

HUAWEI Noah's Ark Lab 295 Jan 07, 2023
A Flask Sentiment Analysis API, with visual implementation

The Sentiment Analysis Api was created using python flask module,it allows users to parse a text or sentence throught the (?text) arguement, then view the sentiment analysis of that sentence. It can

Ifechukwudeni Oweh 10 Jul 17, 2022
Generating new names based on trends in data using GPT2 (Transformer network)

MLOpsNameGenerator Overall Goal The goal of the project is to develop a model that is capable of creating Pokémon names based on its description, usin

Gustav Lang Moesmand 2 Jan 10, 2022
KoBERTopic은 BERTopic을 한국어 데이터에 적용할 수 있도록 토크나이저와 BERT를 수정한 코드입니다.

KoBERTopic 모델 소개 KoBERTopic은 BERTopic을 한국어 데이터에 적용할 수 있도록 토크나이저와 BERT를 수정했습니다. 기존 BERTopic : https://github.com/MaartenGr/BERTopic/tree/05a6790b21009d

Won Joon Yoo 26 Jan 03, 2023
🐍 A hyper-fast Python module for reading/writing JSON data using Rust's serde-json.

A hyper-fast, safe Python module to read and write JSON data. Works as a drop-in replacement for Python's built-in json module. This is alpha software

Matthias 479 Jan 01, 2023
Simple text to phones converter for multiple languages

Phonemizer -- foʊnmaɪzɚ The phonemizer allows simple phonemization of words and texts in many languages. Provides both the phonemize command-line tool

CoML 762 Dec 29, 2022
Universal Adversarial Triggers for Attacking and Analyzing NLP (EMNLP 2019)

Universal Adversarial Triggers for Attacking and Analyzing NLP This is the official code for the EMNLP 2019 paper, Universal Adversarial Triggers for

Eric Wallace 248 Dec 17, 2022
Ongoing research training transformer language models at scale, including: BERT & GPT-2

What is this fork of Megatron-LM and Megatron-DeepSpeed This is a detached fork of https://github.com/microsoft/Megatron-DeepSpeed, which in itself is

BigScience Workshop 316 Jan 03, 2023
Malaya-Speech is a Speech-Toolkit library for bahasa Malaysia, powered by Deep Learning Tensorflow.

Malaya-Speech is a Speech-Toolkit library for bahasa Malaysia, powered by Deep Learning Tensorflow. Documentation Proper documentation is available at

HUSEIN ZOLKEPLI 151 Jan 05, 2023
Python library for parsing resumes using natural language processing and machine learning

CVParser Python library for parsing resumes using natural language processing and machine learning. Setup Installation on Linux and Mac OS Follow the

nafiu 0 Jul 29, 2021
Pretrained Japanese BERT models

Pretrained Japanese BERT models This is a repository of pretrained Japanese BERT models. The models are available in Transformers by Hugging Face. Mod

Inui Laboratory 387 Dec 30, 2022
A Japanese tokenizer based on recurrent neural networks

Nagisa is a python module for Japanese word segmentation/POS-tagging. It is designed to be a simple and easy-to-use tool. This tool has the following

325 Jan 05, 2023
SimBERT升级版(SimBERTv2)!

RoFormer-Sim RoFormer-Sim,又称SimBERTv2,是我们之前发布的SimBERT模型的升级版。 介绍 https://kexue.fm/archives/8454 训练 tensorflow 1.14 + keras 2.3.1 + bert4keras 0.10.6 下载

317 Dec 23, 2022
SIGIR'22 paper: Axiomatically Regularized Pre-training for Ad hoc Search

Introduction This codebase contains source-code of the Python-based implementation (ARES) of our SIGIR 2022 paper. Chen, Jia, et al. "Axiomatically Re

Jia Chen 17 Nov 09, 2022
chaii - hindi & tamil question answering

chaii - hindi & tamil question answering This is the solution for rank 5th in Kaggle competition: chaii - Hindi and Tamil Question Answering. The comp

abhishek thakur 33 Dec 18, 2022