Spatial Attentive Single-Image Deraining with a High Quality Real Rain Dataset (CVPR'19)

Overview

Spatial Attentive Single-Image Deraining with a High Quality Real Rain Dataset (CVPR'19)

Tianyu Wang*, Xin Yang*, Ke Xu, Shaozhe Chen, Qiang Zhang, Rynson W.H. Lau † (* Joint first author. † Rynson Lau is the corresponding author.)

[Arxiv]

Abstract

Removing rain streaks from a single image has been drawing considerable attention as rain streaks can severely degrade the image quality and affect the performance of existing outdoor vision tasks. While recent CNN-based derainers have reported promising performances, deraining remains an open problem for two reasons. First, existing synthesized rain datasets have only limited realism, in terms of modeling real rain characteristics such as rain shape, direction and intensity. Second, there are no public benchmarks for quantitative comparisons on real rain images, which makes the current evaluation less objective. The core challenge is that real world rain/clean image pairs cannot be captured at the same time. In this paper, we address the single image rain removal problem in two ways. First, we propose a semi-automatic method that incorporates temporal priors and human supervision to generate a high-quality clean image from each input sequence of real rain images. Using this method, we construct a large-scale dataset of ∼29.5K rain/rain-free image pairs that cover a wide range of natural rain scenes. Second, to better cover the stochastic distributions of real rain streaks, we propose a novel SPatial Attentive Network (SPANet) to remove rain streaks in a local-to-global manner. Extensive experiments demonstrate that our network performs favorably against the state-of-the-art deraining methods.

Citation

If you use this code or our dataset(including test set), please cite:

@InProceedings{Wang_2019_CVPR,
  author = {Wang, Tianyu and Yang, Xin and Xu, Ke and Chen, Shaozhe and Zhang, Qiang and Lau, Rynson W.H.},
  title = {Spatial Attentive Single-Image Deraining with a High Quality Real Rain Dataset},
  booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  month = {June},
  year = {2019}
}

Dataset

See my personal site

UPDATE We release the code of clean image generation. We also provide some synthesize and real video examples for researchers to try. Note that we only implemented the code using 8 threads.

Requirements

  • PyTorch == 0.4.1 (1.0.x may not work for training)
  • cupy (Installation Guide)
  • opencv-python
  • TensorBoardX
  • Python3.6
  • progressbar2
  • scikit-image
  • ffmpeg >= 4.0.1
  • python-ffmpeg

Setup

  • Clone this repo:
$ git clone ...
$ cd SPANet

Train & Test

Train:

  • Download the dataset(~44GB) and unpack it into code folder (See details in Train_Dataset_README.md). Then, run:
$ python main.py -a train -m latest

Test:

  • Download the test dataset(~455MB) and unpack it into code folder (See details in Test_Dataset_README.md). Then, run:
$ python main.py -a test -m latest

Performance Change

PSNR 38.02 -> 38.53

SSIM 0.9868 -> 0.9875

For generalization, we here stop at 40K steps.

All PSNR and SSIM of results are computed by using skimage.measure. Please use this to evaluate your works.

License

Please see License.txt file.

Acknowledgement

Code borrows from RESCAN by Xia Li. The CUDA extension references pyinn by Sergey Zagoruyko and DSC(CF-Caffe) by Xiaowei Hu. Thanks for sharing!

Contact

E-Mail: [email protected]

Owner
Steve Wong
Discovering the world. CS Ph.D @ CUHK
Steve Wong
Pytorch implementation of our paper LIMUSE: LIGHTWEIGHT MULTI-MODAL SPEAKER EXTRACTION.

LiMuSE Overview Pytorch implementation of our paper LIMUSE: LIGHTWEIGHT MULTI-MODAL SPEAKER EXTRACTION. LiMuSE explores group communication on a multi

Auditory Model and Cognitive Computing Lab 17 Oct 26, 2022
Dynamica causal Bayesian optimisation

Dynamic Causal Bayesian Optimization This is a Python implementation of Dynamic Causal Bayesian Optimization as presented at NeurIPS 2021. Abstract Th

nd308 18 Nov 22, 2022
Hummingbird compiles trained ML models into tensor computation for faster inference.

Hummingbird Introduction Hummingbird is a library for compiling trained traditional ML models into tensor computations. Hummingbird allows users to se

Microsoft 3.1k Dec 30, 2022
AdaFocus (ICCV 2021) Adaptive Focus for Efficient Video Recognition

AdaFocus (ICCV 2021) This repo contains the official code and pre-trained models for AdaFocus. Adaptive Focus for Efficient Video Recognition Referenc

Rainforest Wang 115 Dec 21, 2022
Semi-supervised learning for object detection

Source code for STAC: A Simple Semi-Supervised Learning Framework for Object Detection STAC is a simple yet effective SSL framework for visual object

Google Research 348 Dec 25, 2022
Bringing Characters to Life with Computer Brains in Unity

AI4Animation: Deep Learning for Character Control This project explores the opportunities of deep learning for character animation and control as part

Sebastian Starke 5.5k Jan 04, 2023
Temporal Knowledge Graph Reasoning Triggered by Memories

MTDM Temporal Knowledge Graph Reasoning Triggered by Memories To alleviate the time dependence, we propose a memory-triggered decision-making (MTDM) n

4 Sep 25, 2022
Learning Dense Representations of Phrases at Scale (Lee et al., 2020)

DensePhrases DensePhrases provides answers to your natural language questions from the entire Wikipedia in real-time. While it efficiently searches th

Princeton Natural Language Processing 540 Dec 30, 2022
A PyTorch implementation of the architecture of Mask RCNN

EDIT (AS OF 4th NOVEMBER 2019): This implementation has multiple errors and as of the date 4th, November 2019 is insufficient to be utilized as a reso

Sai Himal Allu 975 Dec 30, 2022
Dense Prediction Transformers

Vision Transformers for Dense Prediction This repository contains code and models for our paper: Vision Transformers for Dense Prediction René Ranftl,

Intel ISL (Intel Intelligent Systems Lab) 1.3k Dec 28, 2022
A basic neural network for image segmentation.

Unet_erythema_detection A basic neural network for image segmentation. 前期准备 1.在logs文件夹中下载h5权重文件,百度网盘链接在logs文件夹中 2.将所有原图 放置在“/dataset_1/JPEGImages/”文件夹

1 Jan 16, 2022
the official implementation of the paper "Isometric Multi-Shape Matching" (CVPR 2021)

Isometric Multi-Shape Matching (IsoMuSh) Paper-CVF | Paper-arXiv | Video | Code Citation If you find our work useful in your research, please consider

Maolin Gao 9 Jul 17, 2022
Scene-Text-Detection-and-Recognition (Pytorch)

Scene-Text-Detection-and-Recognition (Pytorch) Competition URL: https://tbrain.t

Gi-Luen Huang 9 Jan 02, 2023
2D Human Pose estimation using transformers. Implementation in Pytorch

PE-former: Pose Estimation Transformer Vision transformer architectures perform very well for image classification tasks. Efforts to solve more challe

Panteleris Paschalis 23 Oct 17, 2022
Using some basic methods to show linkages and transformations of robotic arms

roboticArmVisualizer Python GUI application to create custom linkages and adjust joint angles. In the future, I plan to add 2d inverse kinematics solv

Sandesh Banskota 1 Nov 19, 2021
Code for "Long Range Probabilistic Forecasting in Time-Series using High Order Statistics"

Long Range Probabilistic Forecasting in Time-Series using High Order Statistics This is the code produced as part of the paper Long Range Probabilisti

16 Dec 06, 2022
a Lightweight library for sequential learning agents, including reinforcement learning

SaLinA: SaLinA - A Flexible and Simple Library for Learning Sequential Agents (including Reinforcement Learning) TL;DR salina is a lightweight library

Facebook Research 405 Dec 17, 2022
Code for the paper "Next Generation Reservoir Computing"

Next Generation Reservoir Computing This is the code for the results and figures in our paper "Next Generation Reservoir Computing". They are written

OSU QuantInfo Lab 105 Dec 20, 2022
LyaNet: A Lyapunov Framework for Training Neural ODEs

LyaNet: A Lyapunov Framework for Training Neural ODEs Provide the model type--config-name to train and test models configured as those shown in the pa

Ivan Dario Jimenez Rodriguez 21 Nov 21, 2022
Official implementation of the paper DeFlow: Learning Complex Image Degradations from Unpaired Data with Conditional Flows

DeFlow: Learning Complex Image Degradations from Unpaired Data with Conditional Flows Official implementation of the paper DeFlow: Learning Complex Im

Valentin Wolf 86 Nov 16, 2022