Code for "On the Effects of Batch and Weight Normalization in Generative Adversarial Networks"

Overview

Note: this repo has been discontinued, please check code for newer version of the paper here

Weight Normalized GAN

Code for the paper "On the Effects of Batch and Weight Normalization in Generative Adversarial Networks".

About the code

Here two versions are provided, one for torch and one for PyTorch.

The code used for the experiments in the paper was in torch and was a bit messy, with hand written backward pass of weight normalized layers and other staff used to test various ideas about GANs that are unrelated to the paper. So we decided to clean up the code and port it to PyTorch (read: autograd). However, we are not able to exactly reproduce the results in the paper with the PyTorch code. So we had to port it back to torch to see the difference.

We did find and fix a mathematical bug in gradient computation (Ouch!) in our implementation of weight normalization, which means that the code used for the paper was incorrect and you might not be able to exactly reproduce the results in the paper with the current code. We need to redo some experiments to make sure everything still works. It seems that now a learning rate of 0.00002 gives very good samples but the speed is not very impressive in the beginning; 0.0001 speeds up training even more than in the paper but give worse samples; 0.00005 balances between the two and also give lower reconstruction loss than in the paper. The example below uses 0.00002.

That being said, we can still find some differences in the samples generated by the two versions of code. We think that the torch version is better, so you are adviced to use that version for training. But you should definitely read the PyTorch version to get a better idea of how our method works. We checked this time that in the torch code, the computed gradients wrt the weight vectors are indeed orthogonal to the weight vectors, so hopefully the difference is not caused by another mathematical bug. It could be a numerical issue since the gradient are not computed in exactly the same way. Or I might have made stupid mistakes as I have been doing machine learning for only half a year. We are still investigating.

Usage

The two versions accept the exact same set of arguments except that there is an additional option to set ID of gpu to use in the torch version.

Before training, you need to prepare the data. For torch you need lmdb.torch for LSUN and cifar.torch for CIFAR-10. Split the dataset into training data and test data with split_data.lua/py. Use --running and --final to set number of test samples for running test and final test respectively.

The LSUN loader creates a cache if there isn't one. It takes some time. The loader for custom dataset from a image folder requires images of each class to be in one subfolder, so if you use say CelebA where there is no classes you need to manually create a dummy class.

To train, run main.lua/py. The only ones you must specify are the --dataset, --dataroot, --save_path and --image_size. By default it trains a vanilla model. Use --norm batch or --norm weight to try different normalizations.

The width and the height of the images are not required to be equal. Nor do they have to be powers of two. They only have to both be even numbers. Image size settings work as follows: if --crop_size is specified or if both --crop_width and --crop_height are specified, the training samples are first cropped to the center. Then, if --width and --height are both specified, the training samples are resized to that size. Otherwise, they are resized so that the aspect ratio is kept and the length of the shorter edge equals --image_size, and then cropped to a square.

If --nlayer is set, that many down/up concolution layers are used. Otherwise such layers are added until the size of the feature map is smaller than 8x8. --nfeature specifies the number of features of the first convolution layer.

Set --load_path to continue a saved training.

To test a trained model, use --final_test. Make sure to also use a larger --test_steps since the default value is for the running test during training. By default it finds the best model in load_path, to use another network, set --net

Read the code to see how other arguments work.

Use plot.lua/py to plot the loss curves. The PyTorch version uses PyGnuplot (it sux).

Example

th main.lua --dataset folder --dataroot /path/to/img_align_celeba --crop_size 160 --image_size 160 --code_size 256 --norm weight --lr 0.00002 --save_path /path/to/save/folder

This should give you something like this in 200,000 iterations: celeba example

Additional notes

The WN model might fail in the first handful of iterations. This happens especially often if the network is deeper (on LSUN). Just restart training. If it get past iteration 5 it should continue to train without trouble. This effect could be reduced by using a smaller learning rate for the first couple of iterations.

Extra stuff

At request, added --ls flag to use least square loss.

Owner
Sitao Xiang
Computer Graphics PhD student at University of Southern California. Twitter: StormRaiser123
Sitao Xiang
PyTorch implementations of the beta divergence loss.

Beta Divergence Loss - PyTorch Implementation This repository contains code for a PyTorch implementation of the beta divergence loss. Dependencies Thi

Billy Carson 7 Nov 09, 2022
Codes for AAAI 2022 paper: Context-aware Health Event Prediction via Transition Functions on Dynamic Disease Graphs

Context-Aware-Healthcare Codes for AAAI 2022 paper: Context-aware Health Event Prediction via Transition Functions on Dynamic Disease Graphs Download

LuChang 9 Dec 26, 2022
Robocop is your personal mini voice assistant made using Python.

Robocop-VoiceAssistant To use this project, you should have python installed in your system. If you don't have python installed, install it beforehand

Sohil Khanduja 3 Feb 26, 2022
Python library to receive live stream events like comments and gifts in realtime from TikTok LIVE.

TikTokLive A python library to connect to and read events from TikTok's LIVE service A python library to receive and decode livestream events such as

Isaac Kogan 277 Dec 23, 2022
I explore rock vs. mine prediction using a SONAR dataset

I explore rock vs. mine prediction using a SONAR dataset. Using a Logistic Regression Model for my prediction algorithm, I intend on predicting what an object is based on supervised learning.

Jeff Shen 1 Jan 11, 2022
Code for the paper "A Study of Face Obfuscation in ImageNet"

A Study of Face Obfuscation in ImageNet Code for the paper: A Study of Face Obfuscation in ImageNet Kaiyu Yang, Jacqueline Yau, Li Fei-Fei, Jia Deng,

35 Oct 04, 2022
A PyTorch Reimplementation of TecoGAN: Temporally Coherent GAN for Video Super-Resolution

TecoGAN-PyTorch Introduction This is a PyTorch reimplementation of TecoGAN: Temporally Coherent GAN for Video Super-Resolution (VSR). Please refer to

165 Dec 17, 2022
Code for 1st place solution in Sleep AI Challenge SNU Hospital

Sleep AI Challenge SNU Hospital 2021 Code for 1st place solution for Sleep AI Challenge (Note that the code is not fully organized) Refer to the notio

Saewon Yang 13 Jan 03, 2022
Solution to the Weather4cast 2021 challenge

This code was used for the entry by the team "antfugue" for the Weather4cast 2021 Challenge. Below, you can find the instructions for generating predi

Jussi Leinonen 13 Jan 03, 2023
Deep learning models for classification of 15 common weeds in the southern U.S. cotton production systems.

CottonWeeds Deep learning models for classification of 15 common weeds in the southern U.S. cotton production systems. requirements pytorch torchsumma

Dong Chen 8 Jun 07, 2022
PyTorch implementation of Towards Accurate Alignment in Real-time 3D Hand-Mesh Reconstruction (ICCV 2021).

Towards Accurate Alignment in Real-time 3D Hand-Mesh Reconstruction Introduction This is official PyTorch implementation of Towards Accurate Alignment

TANG Xiao 96 Dec 27, 2022
SphereFace: Deep Hypersphere Embedding for Face Recognition

SphereFace: Deep Hypersphere Embedding for Face Recognition By Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha Raj and Le Song License SphereFa

Weiyang Liu 1.5k Dec 29, 2022
Efficient Sparse Attacks on Videos using Reinforcement Learning

EARL This repository provides a simple implementation of the work "Efficient Sparse Attacks on Videos using Reinforcement Learning" Example: Demo: Her

12 Dec 05, 2021
MAterial del programa Misión TIC 2022

Mision TIC 2022 Esta iniciativa, aparece como respuesta frente a los retos de la Cuarta Revolución Industrial, y tiene como objetivo la formación de 1

6 May 25, 2022
《DeepViT: Towards Deeper Vision Transformer》(2021)

DeepViT This repo is the official implementation of "DeepViT: Towards Deeper Vision Transformer". The repo is based on the timm library (https://githu

109 Dec 02, 2022
General-purpose program synthesiser

DeepSynth General-purpose program synthesiser. This is the repository for the code of the paper "Scaling Neural Program Synthesis with Distribution-ba

Nathanaël Fijalkow 24 Oct 23, 2022
Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

CoProtector Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

Zhensu Sun 1 Oct 26, 2021
Analysis of rationale selection in neural rationale models

Neural Rationale Interpretability Analysis We analyze the neural rationale models proposed by Lei et al. (2016) and Bastings et al. (2019), as impleme

Yiming Zheng 3 Aug 31, 2022
Norm-based Analysis of Transformer

Norm-based Analysis of Transformer Implementations for 2 papers introducing to analyze Transformers using vector norms: Kobayashi+'20 Attention is Not

Goro Kobayashi 52 Dec 05, 2022
Credo AI Lens is a comprehensive assessment framework for AI systems. Lens standardizes model and data assessment, and acts as a central gateway to assessments created in the open source community.

Lens by Credo AI - Responsible AI Assessment Framework Lens is a comprehensive assessment framework for AI systems. Lens standardizes model and data a

Credo AI 27 Dec 14, 2022