Code and project page for ICCV 2021 paper "DisUnknown: Distilling Unknown Factors for Disentanglement Learning"

Overview

DisUnknown: Distilling Unknown Factors for Disentanglement Learning

See introduction on our project page

Requirements

  • PyTorch >= 1.8.0
  • PyYAML, for loading configuration files
  • Optional: h5py, for using the 3D Shapes dataset
  • Optional: Matplotlib, for plotting sample distributions in code space

Preparing Datasets

Dataset classes and default configurations are provided for the following datasets. See below for how to add new datasets, or you can open an issue and the author might consider adding it. Some datasets need to be prepared before using:

$ python disentangler.py prepare_data <dataset_name> --data_path </path/to/dataset>

If the dataset does not have a standard training/test split it will be split randomly. Use the --test_portion <portion> option to set the portion of test samples. Some dataset have additional options.

  • MNIST, Fashion-MNIST, QMNIST, SVHN
    • Dataset names are mnist, fashion_mnist, qmnist, svhn.
    • data_path should be the same as those for the built-in dataset classes provided by torchvision.
    • We use the full NIST digit dataset from QMNIST (what = 'nist') and it needs to be split.
    • For SVHN, set include_extra: true in dataset_args in the configuration file (this is the default) to include the extra training images in the training set.
  • 3D Chairs
    • Dataset name is chairs.
    • data_path should be the folder containing the rendered_chairs folder.
    • Needs to be split.
    • You may use --compress to down-sample all images and save them as a NumPy array of PNG-encoded bytes. Use --downsample_size <size> to set image size, default to 128. Note that this does not dictate the training-time image size, which is configured separately. Compressing the images speeds up training only slightly if a multi-processing dataloader is used but makes plotting significantly faster.
    • Unrelated to this work, but the author wants to note that this dataset curiously contains 31 azimuth angles times two altitudes for a total of 62 images for each chair with image id 031 skipped, apparently because 32 was the intended number of azimuth angles but when they rendered the images those angles were generated using numpy.linspace(0, 360, 32), ignoring the fact that 0 and 360 are the same angle, then removed the duplicated images 031 and 063 after they realized the mistake. Beware of off-by-one errors in linspace, especially if it is also circular!
  • 3D shapes
    • Dataset name is 3dshapes.
    • data_path should be the folder containing 3dshapes.h5.
    • Needs to be split.
    • You may use --compress to extract all images and then save them as a NumPy array of PNG-encoded bytes. This is mainly for space-saving: the original dataset, when extracted from HDFS, takes 5.9GB of memory. The re-compressed version takes 2.2GB. Extraction and compression takes about an hour.
  • dSprites
    • Dataset name is dsprites
    • data_path should be the folder containing the .npz file.
    • Needs to be split.
    • This dataset is problematic. I found that orientation 0 and orientation 39 are the same, and presumably that was because similar to 3D Chairs something like linspace(0, 360, 40) was used to generate the angles. So yes, I'm telling you again, beware of off-by-one errors in linspace, especially if it is also circular! Anyway in my dataset class I discarded orientation 39, so there are only 39 different orientations and 3 * 6 * 39 * 32 * 32 = 718848 images.
    • The bigger problem is that each of the three shapes (square, ellipse, heart) has a different symmetry. For hearts, each image uniquely determines an orientation angle; for ellipses, each image has two possible orientation angles; and for squares, each image has four possible orientation angles. They managed to make the dataset so that (apart from orientation 0 and 39 being the same) different orientations correspond to different images because 2 and 4 are not divisors of 39 (which makes me wonder if the off-by-one error was intentional) but the orientation is still conceptually wrong, since if you consider the orientation angles of ellipses modulo 180 or the orientation angles of squares modulo 90, then the orientation class IDs are not ordered in increasing order of orientation angles. Instead the orientation angles of ellipses go around twice in this range and the orientation angles of squares go around four times. To solve this problem, I included an option to set relabel_orientation: true in dataset_args in the configuration file (this is the default) which will cause the orientation of ellipses and squares to be re-labeled in the correct order. Specifically, for ellipses orientation t is re-labeled as (t * 2) % 39 and for squares orientation t is re-labeled as (t * 4) % 39. But still, this causes ellipses to rotate twice as slowly and squares to rotate four times as slowly when the orientation increases, which is still not ideal. When shapes with different symmetries are mixed there is simply no easy solution, and do not expect good results on this dataset if the unknown factor contains the orientation.
    • --compress does the same thing as in 3D Shapes.

Training

To train, use

$ python disentangler.py train --config_file </path/to/config/file> --save_path </path/to/save/folder>

The configuration file is in YAML. See the commented example for explanations. If config_file is omitted, it is expected that save_path already exists and contains config.yaml. Otherwise save_path will be created if it does not exist, and config_file will be copied into it. If save_path already contains a previous training run that has been halted, it will by default resume from the latest checkpoint. --start_from <stage_name> [<iteration>] can be used to choose another restarting point. --start_from stage1 to restart from scratch. Specifying --data_path or --device will override those settings in the configuration file.

Although our goal is to deal with the cases where some factors are labeled and some factors are unknown, it feels wrong not to extrapolate to the cases where all factors are labeled or where all factors are unknown. Wo do allow these, but some parts of our method will become unnecessary and will be discarded accordingly. In particular if all factors are unknown then we just train a VAE in stage I and then a GAN having the same code space in stage II, so you can use this code for just training a GAN. We don't have the myriad of GAN tricks though.

Meaning of Visualization Images

During training, images generated for visualization will be saved in the subfolder samples. test_images.jpg contains images from the test set in even-numbered columns (starting from zero), with odd-numbered columns being empty. The generated images will contain corresponding reconstructed images in even-numbered columns, while each image in odd-numbered columns is generated by combining the unknown code from its left and the labeled code from its right (warp to the next row).

Example test images:

Test images

Example generated images:

Generated_images

Adding a New Dataset

__init__() should accept four positional arguments root, part, labeled_factors, transform in that order, plus any additional keyword arguments that one expects to receive from dataset_args in the configuration file. root is the path to the dataset folder. transform is as usual. part can be train, test or plot, specifying which subset of the dataset to load. The plotting set is generally the same as the test set, but part = 'plot' is passed in so that a smaller plotting set can be used if the test set is too large.

labeled_factors is a list of factor names. __getitem__() should return a tuple (image, labels) where image is the image and labels is a one-dimensional PyTorch tensor of type torch.int64, containing the labels for that image in the order listed in labeled_factors. labels should always be a one-dimensional tensor even if there is only one labeled factor, not a Python int or a zero-dimensional tensor. If labeled_factors is empty then __getitem__() should return image only.

In addition, metadata about the factors should be available in the following properties: nclass should be a list of ints containing the number of classes of each factor, and class_freq should be a list of PyTorch tensors, each being one-dimensional, containing the distribution of classes of each factor in (the current split of) the dataset.

If any preparation is required, implement a static method prepare_data(args) where args is a return value of argparse.ArgumentParser.parse_args(), containing properties data_path and test_portion by default. If additional command-line arguments are needed, implement a static method add_prepare_args(parser) where parser.add_argument() can be called.

Finally add it to the dictionary of recognized datasets in data/__init__.py.

Default configuration should also be created as default_config/datasets/<dataset_name>.yaml. It should at a minimum contain image_size, image_channels and factors. factors has the same syntax as labeled_factors as explained in the example training configuration. It should contain a complete list of all factors. In particular, if the dataset does not include a complete set of labels, there should be a factor called unknown which will become the default unknown factor if labeled_factors is not set in the training configuration.

Any additional settings in the default configuration will override global defaults in default_config/default_config.yaml.

Citing This Work (BibTeX)

@inproceedings{xiang2021disunknown,
  title={DisUnknown: Distilling Unknown Factors for Disentanglement Learning},
  author={Xiang, Sitao and Gu, Yuming and Xiang, Pengda and Chai, Menglei and Li, Hao and Zhao, Yajie and He, Mingming},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  pages={14810--14819},
  year={2021}
}
Owner
Sitao Xiang
Computer Graphics PhD student at University of Southern California. Twitter: StormRaiser123
Sitao Xiang
Semi-Supervised Semantic Segmentation with Pixel-Level Contrastive Learning from a Class-wise Memory Bank

This repository provides the official code for replicating experiments from the paper: Semi-Supervised Semantic Segmentation with Pixel-Level Contrast

Iñigo Alonso Ruiz 58 Dec 15, 2022
A machine learning malware analysis framework for Android apps.

🕵️ A machine learning malware analysis framework for Android apps. ☢️ DroidDetective is a Python tool for analysing Android applications (APKs) for p

James Stevenson 77 Dec 27, 2022
PyTorch implementation of PP-LCNet: A Lightweight CPU Convolutional Neural Network

PyTorch implementation of PP-LCNet Reproduction of PP-LCNet architecture as described in PP-LCNet: A Lightweight CPU Convolutional Neural Network by C

Quan Nguyen (Fly) 47 Nov 02, 2022
OCRA (Object-Centric Recurrent Attention) source code

OCRA (Object-Centric Recurrent Attention) source code Hossein Adeli and Seoyoung Ahn Please cite this article if you find this repository useful: For

Hossein Adeli 2 Jun 18, 2022
Neural Lexicon Reader: Reduce Pronunciation Errors in End-to-end TTS by Leveraging External Textual Knowledge

Neural Lexicon Reader: Reduce Pronunciation Errors in End-to-end TTS by Leveraging External Textual Knowledge This is an implementation of the paper,

Mutian He 19 Oct 14, 2022
Learning infinite-resolution image processing with GAN and RL from unpaired image datasets, using a differentiable photo editing model.

Exposure: A White-Box Photo Post-Processing Framework ACM Transactions on Graphics (presented at SIGGRAPH 2018) Yuanming Hu1,2, Hao He1,2, Chenxi Xu1,

Yuanming Hu 719 Dec 29, 2022
PyTorch implementation of Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose

Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose Release Notes The official PyTorch implementation of Neural View S

Angtian Wang 20 Oct 09, 2022
DeepProbLog is an extension of ProbLog that integrates Probabilistic Logic Programming with deep learning by introducing the neural predicate.

DeepProbLog DeepProbLog is an extension of ProbLog that integrates Probabilistic Logic Programming with deep learning by introducing the neural predic

KU Leuven Machine Learning Research Group 94 Dec 18, 2022
Python PID Tuner - Makes a model of the System from a Process Reaction Curve and calculates PID Gains

PythonPID_Tuner_SOPDT Step 1: Takes a Process Reaction Curve in csv format - assumes data at 100ms interval (column names CV and PV) Step 2: Makes a r

1 Jan 18, 2022
Contrastive Learning for Metagenomic Binning

CLMB A simple framework for CLMB - a novel deep Contrastive Learningfor Metagenomic Binning Created by Pengfei Zhang, senior of Department of Computer

1 Sep 14, 2022
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

107 Dec 02, 2022
The repository forked from NVlabs uses our data. (Differentiable rasterization applied to 3D model simplification tasks)

nvdiffmodeling [origin_code] Differentiable rasterization applied to 3D model simplification tasks, as described in the paper: Appearance-Driven Autom

Qiujie (Jay) Dong 2 Oct 31, 2022
[ICLR 2021] "Neural Architecture Search on ImageNet in Four GPU Hours: A Theoretically Inspired Perspective" by Wuyang Chen, Xinyu Gong, Zhangyang Wang

Neural Architecture Search on ImageNet in Four GPU Hours: A Theoretically Inspired Perspective [PDF] Wuyang Chen, Xinyu Gong, Zhangyang Wang In ICLR 2

VITA 156 Nov 28, 2022
An efficient PyTorch implementation of the evaluation metrics in recommender systems.

recsys_metrics An efficient PyTorch implementation of the evaluation metrics in recommender systems. Overview • Installation • How to use • Benchmark

Xingdong Zuo 12 Dec 02, 2022
Rethinking the U-Net architecture for multimodal biomedical image segmentation

MultiResUNet Rethinking the U-Net architecture for multimodal biomedical image segmentation This repository contains the original implementation of "M

Nabil Ibtehaz 308 Jan 05, 2023
FMA: A Dataset For Music Analysis

FMA: A Dataset For Music Analysis Michaël Defferrard, Kirell Benzi, Pierre Vandergheynst, Xavier Bresson. International Society for Music Information

Michaël Defferrard 1.8k Dec 29, 2022
Implementation of QuickDraw - an online game developed by Google, combined with AirGesture - a simple gesture recognition application

QuickDraw - AirGesture Introduction Here is my python source code for QuickDraw - an online game developed by google, combined with AirGesture - a sim

Viet Nguyen 89 Dec 18, 2022
Official Implementation for the paper DeepFace-EMD: Re-ranking Using Patch-wise Earth Mover’s Distance Improves Out-Of-Distribution Face Identification

DeepFace-EMD: Re-ranking Using Patch-wise Earth Mover’s Distance Improves Out-Of-Distribution Face Identification Official Implementation for the pape

Anh M. Nguyen 36 Dec 28, 2022
RITA is a family of autoregressive protein models, developed by LightOn in collaboration with the OATML group at Oxford and the Debora Marks Lab at Harvard.

RITA: a Study on Scaling Up Generative Protein Sequence Models RITA is a family of autoregressive protein models, developed by a collaboration of Ligh

LightOn 69 Dec 22, 2022
Pytorch implementation of Supporting Clustering with Contrastive Learning, NAACL 2021

Supporting Clustering with Contrastive Learning SCCL (NAACL 2021) Dejiao Zhang, Feng Nan, Xiaokai Wei, Shangwen Li, Henghui Zhu, Kathleen McKeown, Ram

231 Jan 05, 2023