AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning

Related tags

Deep LearningAdaShare
Overview

AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning (NeurIPS 2020)

Introduction

alt text

AdaShare is a novel and differentiable approach for efficient multi-task learning that learns the feature sharing pattern to achieve the best recognition accuracy, while restricting the memory footprint as much as possible. Our main idea is to learn the sharing pattern through a task-specific policy that selectively chooses which layers to execute for a given task in the multi-task network. In other words, we aim to obtain a single network for multi-task learning that supports separate execution paths for different tasks.

Here is the link for our arxiv version.

Welcome to cite our work if you find it is helpful to your research.

@article{sun2020adashare,
  title={Adashare: Learning what to share for efficient deep multi-task learning},
  author={Sun, Ximeng and Panda, Rameswar and Feris, Rogerio and Saenko, Kate},
  journal={Advances in Neural Information Processing Systems},
  volume={33},
  year={2020}
}

Experiment Environment

Our implementation is in Pytorch. We train and test our model on 1 Tesla V100 GPU for NYU v2 2-task, CityScapes 2-task and use 2 Tesla V100 GPUs for NYU v2 3-task and Tiny-Taskonomy 5-task.

We use python3.6 and please refer to this link to create a python3.6 conda environment.

Install the listed packages in the virual environment:

conda install pytorch torchvision cudatoolkit=10.2 -c pytorch
conda install matplotlib
conda install -c menpo opencv
conda install pillow
conda install -c conda-forge tqdm
conda install -c anaconda pyyaml
conda install scikit-learn
conda install -c anaconda scipy
pip install tensorboardX

Datasets

Please download the formatted datasets for NYU v2 here

The formatted CityScapes can be found here.

Download Tiny-Taskonomy as instructed by its GitHub.

The formatted DomainNet can be found here.

Remember to change the dataroot to your local dataset path in all yaml files in the ./yamls/.

Training

Policy Learning Phase

Please execute train.py for policy learning, using the command

python train.py --config <yaml_file_name> --gpus <gpu ids>

For example, python train.py --config yamls/adashare/nyu_v2_2task.yml --gpus 0.

Sample yaml files are under yamls/adashare

Note: use domainnet branch for experiments on DomainNet, i.e. python train_domainnet.py --config <yaml_file_name> --gpus <gpu ids>

Retrain Phase

After Policy Learning Phase, we sample 8 different architectures and execute re-train.py for retraining.

python re-train.py --config <yaml_file_name> --gpus <gpu ids> --exp_ids <random seed id>

where we use different --exp_ids to specify different random seeds and generate different architectures. The best performance of all 8 runs is reported in the paper.

For example, python re-train.py --config yamls/adashare/nyu_v2_2task.yml --gpus 0 --exp_ids 0.

Note: use domainnet branch for experiments on DomainNet, i.e. python re-train_domainnet.py --config <yaml_file_name> --gpus <gpu ids>

Test/Inference

After Retraining Phase, execute test.py for get the quantitative results on the test set.

python test.py --config <yaml_file_name> --gpus <gpu ids> --exp_ids <random seed id>

For example, python test.py --config yamls/adashare/nyu_v2_2task.yml --gpus 0 --exp_ids 0.

We provide our trained checkpoints as follows:

  1. Please download our model in NYU v2 2-Task Learning
  2. Please donwload our model in CityScapes 2-Task Learning
  3. Please download our model in NYU v2 3-Task Learning

To use these provided checkpoints, please download them to ../experiments/checkpoints/ and uncompress there. Use the following command to test

python test.py --config yamls/adashare/nyu_v2_2task_test.yml --gpus 0 --exp_ids 0
python test.py --config yamls/adashare/cityscapes_2task_test.yml --gpus 0 --exp_ids 0
python test.py --config yamls/adashare/nyu_v2_3task_test.yml --gpus 0 --exp_ids 0

Test with our pre-trained checkpoints

We also provide some sample images to easily test our model for nyu v2 3 tasks.

Please download our model in NYU v2 3-Task Learning

Execute test_sample.py to test on sample images in ./nyu_v2_samples, using the command

python test_sample.py --config  yamls/adashare/nyu_v2_3task_test.yml --gpus 0

It will print the average quantitative results of sample images.

Note

If any link is invalid or any question, please email [email protected]

Get 2D point positions (e.g., facial landmarks) projected on 3D mesh

points2d_projection_mesh Input 2D points (e.g. facial landmarks) on an image Camera parameters (extrinsic and intrinsic) of the image Aligned 3D mesh

5 Dec 08, 2022
Curvlearn, a Tensorflow based non-Euclidean deep learning framework.

English | 简体中文 Why Non-Euclidean Geometry Considering these simple graph structures shown below. Nodes with same color has 2-hop distance whereas 1-ho

Alibaba 123 Dec 12, 2022
Source code for Acorn, the precision farming rover by Twisted Fields

Acorn precision farming rover This is the software repository for Acorn, the precision farming rover by Twisted Fields. For more information see twist

Twisted Fields 198 Jan 02, 2023
A web porting for NVlabs' StyleGAN2, to facilitate exploring all kinds characteristic of StyleGAN networks

This project is a web porting for NVlabs' StyleGAN2, to facilitate exploring all kinds characteristic of StyleGAN networks. Thanks for NVlabs' excelle

K.L. 150 Dec 15, 2022
RRxIO - Robust Radar Visual/Thermal Inertial Odometry: Robust and accurate state estimation even in challenging visual conditions.

RRxIO - Robust Radar Visual/Thermal Inertial Odometry RRxIO offers robust and accurate state estimation even in challenging visual conditions. RRxIO c

Christopher Doer 64 Dec 29, 2022
An unofficial personal implementation of UM-Adapt, specifically to tackle joint estimation of panoptic segmentation and depth prediction for autonomous driving datasets.

Semisupervised Multitask Learning This repository is an unofficial and slightly modified implementation of UM-Adapt[1] using PyTorch. This code primar

Abhinav Atrishi 11 Nov 25, 2022
ManipulaTHOR, a framework that facilitates visual manipulation of objects using a robotic arm

ManipulaTHOR: A Framework for Visual Object Manipulation Kiana Ehsani, Winson Han, Alvaro Herrasti, Eli VanderBilt, Luca Weihs, Eric Kolve, Aniruddha

AI2 65 Dec 30, 2022
Outlier Exposure with Confidence Control for Out-of-Distribution Detection

OOD-detection-using-OECC This repository contains the essential code for the paper Outlier Exposure with Confidence Control for Out-of-Distribution De

Nazim Shaikh 64 Nov 02, 2022
Simple sinc interpolation in PyTorch.

Kazane: simple sinc interpolation for 1D signal in PyTorch Kazane utilize FFT based convolution to provide fast sinc interpolation for 1D signal when

Chin-Yun Yu 10 May 03, 2022
TransMIL: Transformer based Correlated Multiple Instance Learning for Whole Slide Image Classification

TransMIL: Transformer based Correlated Multiple Instance Learning for Whole Slide Image Classification [NeurIPS 2021] Abstract Multiple instance learn

132 Dec 30, 2022
This repository contains the code for our paper VDA (public in EMNLP2021 main conference)

Virtual Data Augmentation: A Robust and General Framework for Fine-tuning Pre-trained Models This repository contains the code for our paper VDA (publ

RUCAIBox 13 Aug 06, 2022
Pre-trained NFNets with 99% of the accuracy of the official paper

NFNet Pytorch Implementation This repo contains pretrained NFNet models F0-F6 with high ImageNet accuracy from the paper High-Performance Large-Scale

Benjamin Schmidt 133 Dec 09, 2022
CVPR 2021 Challenge on Super-Resolution Space

Learning the Super-Resolution Space Challenge NTIRE 2021 at CVPR Learning the Super-Resolution Space challenge is held as a part of the 6th edition of

andreas 104 Oct 26, 2022
pytorch, hand(object) detect ,yolo v5,手检测

YOLO V5 物体检测,包括手部检测。 项目介绍 手部检测 手部检测示例如下 : 视频示例: 项目配置 作者开发环境: Python 3.7 PyTorch = 1.5.1 数据集 手部检测数据集 该项目数据集采用 TV-Hand 和 COCO-Hand (COCO-Hand-Big 部分) 进

Eric.Lee 11 Dec 20, 2022
Additional functionality for use with fastai’s medical imaging module

fmi Adding additional functionality to fastai's medical imaging module To learn more about medical imaging using Fastai you can view my blog Install g

14 Oct 31, 2022
Hard cater examples from Hopper ICLR paper

CATER-h Honglu Zhou*, Asim Kadav, Farley Lai, Alexandru Niculescu-Mizil, Martin Renqiang Min, Mubbasir Kapadia, Hans Peter Graf (*Contact: honglu.zhou

NECLA ML Group 6 May 11, 2021
EquiBind: Geometric Deep Learning for Drug Binding Structure Prediction

EquiBind: geometric deep learning for fast predictions of the 3D structure in which a small molecule binds to a protein

Hannes Stärk 355 Jan 03, 2023
Image Segmentation Evaluation

Image Segmentation Evaluation Martin Keršner, [email protected] Evaluation

Martin Kersner 273 Oct 28, 2022
[NeurIPS2021] Code Release of Learning Transferable Perturbations

Learning Transferable Adversarial Perturbations This is an official release of the paper Learning Transferable Adversarial Perturbations. The code is

Krishna Kanth 17 Nov 11, 2022
Disentangled Cycle Consistency for Highly-realistic Virtual Try-On, CVPR 2021

Disentangled Cycle Consistency for Highly-realistic Virtual Try-On, CVPR 2021 [WIP] The code for CVPR 2021 paper 'Disentangled Cycle Consistency for H

ChongjianGE 94 Dec 11, 2022