SustainBench: Benchmarks for Monitoring the Sustainable Development Goals with Machine Learning

Overview

Datasets | Website | Raw Data | OpenReview

SustainBench: Benchmarks for Monitoring the Sustainable Development Goals with Machine Learning

Christopher Yeh, Chenlin Meng, Sherrie Wang, Anne Driscoll, Erik Rozi, Patrick Liu, Jihyeon Lee, Marshall Burke, David B. Lobell, Stefano Ermon

California Institute of Technology, Stanford University, and UC Berkeley

SustainBench is a collection of 15 benchmark tasks across 7 SDGs, including tasks related to economic development, agriculture, health, education, water and sanitation, climate action, and life on land. Datasets for 11 of the 15 tasks are released publicly for the first time. Our goals for SustainBench are to

  1. lower the barriers to entry for the machine learning community to contribute to measuring and achieving the SDGs;
  2. provide standard benchmarks for evaluating machine learning models on tasks across a variety of SDGs; and
  3. encourage the development of novel machine learning methods where improved model performance facilitates progress towards the SDGs.

Table of Contents

Overview

SustainBench provides datasets and standardized benchmarks for 15 SDG-related tasks, listed below. Details for each dataset and task can be found in our paper and on our website. The raw data can be downloaded from Google Drive and is released under a CC-BY-SA 4.0 license.

  • SDG 1: No Poverty
    • Task 1A: Predicting poverty over space
    • Task 1B: Predicting change in poverty over time
  • SDG 2: Zero Hunger
  • SDG 3: Good Health and Well-being
  • SDG 4: Quality Education
    • Task 4A: Women educational attainment
  • SDG 6: Clean Water and Sanitation
  • SDG 13: Climate Action
  • SDG 15: Life on Land
    • Task 15A: Feature learning for land cover classification
    • Task 15B: Out-of-domain land cover classification

Dataloaders

For each dataset, we provide Python dataloaders that load the data as PyTorch tensors. Please see the sustainbench folder as well as our website for detailed documentation.

Running Baseline Models

We provide baseline models for many of the benchmark tasks included in SustainBench. See the baseline_models folder for the code and detailed instructions to reproduce our results.

Dataset Preprocessing

11 of the 15 SustainBench benchmark tasks involve data that is being publicly released for the first time. We release the processed versions of our datasets on Google Drive. However, we also provide code and detailed instructions for how we preprocessed the datasets in the dataset_preprocessing folder. You do NOT need anything from the dataset_preprocessing folder for downloading the processed datasets or running our baseline models.

Computing Requirements

This code was tested on a system with the following specifications:

  • operating system: Ubuntu 16.04.7 LTS
  • CPU: Intel(R) Xeon(R) CPU E5-2620 v4
  • memory (RAM): 125 GB
  • disk storage: 5 TB
  • GPU: NVIDIA P100 GPU

The main software requirements are Python 3.7 with TensorFlow r1.15, PyTorch 1.9, and R 4.1. The complete list of required packages and library are listed in the two conda environment YAML files (env_create.yml and env_bench.yml), which are meant to be used with conda (version 4.10). See here for instructions on installing conda via Miniconda. Once conda is installed, run one of the following commands to set up the desired conda environment:

conda env update -f env_create.yml --prune
conda env update -f env_bench.yml --prune

The conda environment files default to CPU-only packages. If you have a GPU, please comment/uncomment the appropriate lines in the environment files; you may need to also install CUDA 10 or 11 and cuDNN 7.

Code Formatting and Type Checking

This repo uses flake8 for Python linting and mypy for type-checking. Configuration files for each are included in this repo: .flake8 and mypy.ini.

To run either code linting or type checking, set the current directory to the repo root directory. Then run any of the following commands:

# LINTING
# =======

# entire repo
flake8

# all modules within utils directory
flake8 utils

# a single module
flake8 path/to/module.py

# a jupyter notebook - ignore these error codes, in addition to the ignored codes in .flake8:
# - E305: expected 2 blank lines after class or function definition
# - E402: Module level import not at top of file
# - F404: from __future__ imports must occur at the beginning of the file
# - W391: Blank line at end of file
jupyter nbconvert path/to/notebook.ipynb --stdout --to script | flake8 - --extend-ignore=E305,E402,F404,W391


# TYPE CHECKING
# =============

# entire repo
mypy .

# all modules within utils directory
mypy -p utils

# a single module
mypy path/to/module.py

# a jupyter notebook
mypy -c "$(jupyter nbconvert path/to/notebook.ipynb --stdout --to script)"

Citation

Please cite this article as follows, or use the BibTeX entry below.

C. Yeh, C. Meng, S. Wang, A. Driscoll, E. Rozi, P. Liu, J. Lee, M. Burke, D. B. Lobell, and S. Ermon, "SustainBench: Benchmarks for Monitoring the Sustainable Development Goals with Machine Learning," in Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2), Dec. 2021. [Online]. Available: https://openreview.net/forum?id=5HR3vCylqD.

@inproceedings{
    yeh2021sustainbench,
    title = {{SustainBench: Benchmarks for Monitoring the Sustainable Development Goals with Machine Learning}},
    author = {Christopher Yeh and Chenlin Meng and Sherrie Wang and Anne Driscoll and Erik Rozi and Patrick Liu and Jihyeon Lee and Marshall Burke and David B. Lobell and Stefano Ermon},
    booktitle = {Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2)},
    year = {2021},
    month = {12},
    url = {https://openreview.net/forum?id=5HR3vCylqD}
}
AOT-GAN for High-Resolution Image Inpainting (codebase for image inpainting)

AOT-GAN for High-Resolution Image Inpainting Arxiv Paper | AOT-GAN: Aggregated Contextual Transformations for High-Resolution Image Inpainting Yanhong

Multimedia Research 214 Jan 03, 2023
Code for the paper "There is no Double-Descent in Random Forests"

Code for the paper "There is no Double-Descent in Random Forests" This repository contains the code to run the experiments for our paper called "There

2 Jan 14, 2022
領域を指定し、キーを入力することで画像を保存するツールです。クラス分類用のデータセット作成を想定しています。

image-capture-class-annotation 領域を指定し、キーを入力することで画像を保存するツールです。 クラス分類用のデータセット作成を想定しています。 Requirement OpenCV 3.4.2 or later Usage 実行方法は以下です。 起動後はマウスクリック4

KazuhitoTakahashi 5 May 28, 2021
CTF challenges and write-ups for MicroCTF 2021.

MicroCTF 2021 Qualifications About This repository contains CTF challenges and official write-ups for MicroCTF 2021 Qualifications. License Distribute

Shellmates 12 Dec 27, 2022
SciPy fixes and extensions

scipyx SciPy is large library used everywhere in scientific computing. That's why breaking backwards-compatibility comes as a significant cost and is

Nico Schlömer 16 Jul 17, 2022
Employs neural networks to classify images into four categories: ship, automobile, dog or frog

Neural Net Image Classifier Employs neural networks to classify images into four categories: ship, automobile, dog or frog Viterbi_1.py uses a classic

Riley Baker 1 Jan 18, 2022
Joint Gaussian Graphical Model Estimation: A Survey

Joint Gaussian Graphical Model Estimation: A Survey Test Models Fused graphical lasso [1] Group graphical lasso [1] Graphical lasso [1] Doubly joint s

Koyejo Lab 1 Aug 10, 2022
a short visualisation script for pyvideo data

PyVideo Speakers A CLI that visualises repeat speakers from events listed in https://github.com/pyvideo/data Not terribly efficient, but you know. Ins

Katie McLaughlin 3 Nov 24, 2021
Split Variational AutoEncoder

Split-VAE Split Variational AutoEncoder Introduction This repository contains and implemementation of a Split Variational AutoEncoder (SVAE). In a SVA

Andrea Asperti 2 Sep 02, 2022
Voxel-based Network for Shape Completion by Leveraging Edge Generation (ICCV 2021, oral)

Voxel-based Network for Shape Completion by Leveraging Edge Generation This is the PyTorch implementation for the paper "Voxel-based Network for Shape

10 Dec 04, 2022
Neural Nano-Optics for High-quality Thin Lens Imaging

Neural Nano-Optics for High-quality Thin Lens Imaging Project Page | Paper | Data Ethan Tseng, Shane Colburn, James Whitehead, Luocheng Huang, Seung-H

Ethan Tseng 39 Dec 05, 2022
Exploring whether attention is necessary for vision transformers

Do You Even Need Attention? A Stack of Feed-Forward Layers Does Surprisingly Well on ImageNet Paper/Report TL;DR We replace the attention layer in a v

Luke Melas-Kyriazi 461 Jan 07, 2023
tf2onnx - Convert TensorFlow, Keras and Tflite models to ONNX.

tf2onnx converts TensorFlow (tf-1.x or tf-2.x), tf.keras and tflite models to ONNX via command line or python api.

Open Neural Network Exchange 1.8k Jan 08, 2023
Tutorials and implementations for "Self-normalizing networks"

Self-Normalizing Networks Tutorials and implementations for "Self-normalizing networks"(SNNs) as suggested by Klambauer et al. (arXiv pre-print). Vers

Institute of Bioinformatics, Johannes Kepler University Linz 1.6k Jan 07, 2023
🥇 LG-AI-Challenge 2022 1위 솔루션 입니다.

LG-AI-Challenge-for-Plant-Classification Dacon에서 진행된 농업 환경 변화에 따른 작물 병해 진단 AI 경진대회 에 대한 코드입니다. (colab directory에 코드가 잘 정리 되어있습니다.) Requirements python

siwooyong 10 Jun 30, 2022
DeepOBS: A Deep Learning Optimizer Benchmark Suite

DeepOBS - A Deep Learning Optimizer Benchmark Suite DeepOBS is a benchmarking suite that drastically simplifies, automates and improves the evaluation

Aaron Bahde 7 May 12, 2020
[NeurIPS'21 Spotlight] PyTorch code for our paper "Aligned Structured Sparsity Learning for Efficient Image Super-Resolution"

ASSL This repository is for a new network pruning method (Aligned Structured Sparsity Learning, ASSL) for efficient single image super-resolution (SR)

Huan Wang 47 Nov 28, 2022
UI2I via StyleGAN2 - Unsupervised image-to-image translation method via pre-trained StyleGAN2 network

We proposed an unsupervised image-to-image translation method via pre-trained StyleGAN2 network. paper: Unsupervised Image-to-Image Translation via Pr

208 Dec 30, 2022
TiP-Adapter: Training-free CLIP-Adapter for Better Vision-Language Modeling

TiP-Adapter: Training-free CLIP-Adapter for Better Vision-Language Modeling This is the official code release for the paper 'TiP-Adapter: Training-fre

peng gao 189 Jan 04, 2023
Python calculations for the position of the sun and moon.

Astral This is 'astral' a Python module which calculates Times for various positions of the sun: dawn, sunrise, solar noon, sunset, dusk, solar elevat

Simon Kennedy 169 Dec 20, 2022