A containerized REST API around OpenAI's CLIP model.

Overview

OpenAI's CLIP — REST API

This is a container wrapping OpenAI's CLIP model in a RESTful interface.

Running the container locally

First, build the container:

docker build -t clip-container:latest .

Then, you can run it:

docker run -it -p 8080:8080 --name "clip-container" --rm clip-container:latest /opt/ml/code/serve

Sending requests:

The container exposes two different endpoints:

  • GET /ping: Returns 200 status if the container is working properly.
  • POST /invocations: Processes a list of images and returns the list of labels with their corresponding probabilities.

Here is an example request assuming the container is listening in port 8080:

curl --location --request POST 'http://localhost:8080/invocations' \
--header 'Content-Type: application/json' \
--data-raw '{
    "images": [
        "https://images.unsplash.com/photo-1597308680537-1ba44407ffc0?ixid=MXwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHw%3D&ixlib=rb-1.2.1&auto=format&fit=crop&w=1834&q=80",
        "https://images.unsplash.com/photo-1589270216117-7972b3082c7d?ixid=MXwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHw%3D&ixlib=rb-1.2.1&auto=format&fit=crop&w=1834&q=80"],
    "classes": ["person", "bag", "person with a bag", "woman riding a horse", "woman with a bag", "woman with black shirt and a bag"]
}'

The response looks like this:

[
    {
        "url": "https://images.unsplash.com/photo-1597308680537-1ba44407ffc0?ixid=MXwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHw%3D&ixlib=rb-1.2.1&auto=format&fit=crop&w=1834&q=80", 
        "labels": [
            "woman with black shirt and a bag", 
            "woman with a bag", 
            "person with a bag", 
            "bag", "person"
        ], 
        "probs": [1.0, 1.7488513970320696e-09, 1.1663764917350243e-19, 4.179975909038141e-30, 3.77612043676229e-30]
    }, 
    {
        "url": "https://images.unsplash.com/photo-1589270216117-7972b3082c7d?ixid=MXwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHw%3D&ixlib=rb-1.2.1&auto=format&fit=crop&w=1834&q=80", 
        "labels": [
            "person with a bag", 
            "woman with black shirt and a bag", 
            "bag", 
            "woman with a bag", 
            "person"
        ], 
        "probs": [1.0, 2.4879632576357835e-08, 2.065714813830402e-13, 7.658033346455602e-15, 1.1307645811408335e-23]
    }
]

SageMaker Integration

This container is compatible with SageMaker so you should be able to host it as a SageMaker endpoint with no modifications. The code supports GPU and CPU instances.

Owner
Santiago Valdarrama
I care a whole lot about building software. More specifically, I lose sleep over Machine Learning and Computer Vision.
Santiago Valdarrama
Official implementation of paper "Query2Label: A Simple Transformer Way to Multi-Label Classification".

Introdunction This is the official implementation of the paper "Query2Label: A Simple Transformer Way to Multi-Label Classification". Abstract This pa

Shilong Liu 274 Dec 28, 2022
NeurIPS 2021, self-supervised 6D pose on category level

SE(3)-eSCOPE video | paper | website Leveraging SE(3) Equivariance for Self-Supervised Category-Level Object Pose Estimation Xiaolong Li, Yijia Weng,

Xiaolong 63 Nov 22, 2022
Scikit-learn compatible estimation of general graphical models

skggm : Gaussian graphical models using the scikit-learn API In the last decade, learning networks that encode conditional independence relationships

213 Jan 02, 2023
Meta Self-learning for Multi-Source Domain Adaptation: A Benchmark

Meta Self-Learning for Multi-Source Domain Adaptation: A Benchmark Project | Arxiv | YouTube | | Abstract In recent years, deep learning-based methods

CVSM Group - email: <a href=[email protected]"> 188 Dec 12, 2022
Prompt-BERT: Prompt makes BERT Better at Sentence Embeddings

Prompt-BERT: Prompt makes BERT Better at Sentence Embeddings Results on STS Tasks Model STS12 STS13 STS14 STS15 STS16 STSb SICK-R Avg. unsup-prompt-be

196 Jan 08, 2023
机器学习、深度学习、自然语言处理等人工智能基础知识总结。

说明 机器学习、深度学习、自然语言处理基础知识总结。 目前主要参考李航老师的《统计学习方法》一书,也有一些内容例如XGBoost、聚类、深度学习相关内容、NLP相关内容等是书中未提及的。

Peter 445 Dec 12, 2022
The code for replicating the experiments from the LFI in SSMs with Unknown Dynamics paper.

Likelihood-Free Inference in State-Space Models with Unknown Dynamics This package contains the codes required to run the experiments in the paper. Th

Alex Aushev 0 Dec 27, 2021
PixelPyramids: Exact Inference Models from Lossless Image Pyramids (ICCV 2021)

PixelPyramids: Exact Inference Models from Lossless Image Pyramids This repository contains the PyTorch implementation of the paper PixelPyramids: Exa

Visual Inference Lab @TU Darmstadt 8 Dec 11, 2022
NeuroGen: activation optimized image synthesis for discovery neuroscience

NeuroGen: activation optimized image synthesis for discovery neuroscience NeuroGen is a framework for synthesizing images that control brain activatio

3 Aug 17, 2022
Part-aware Measurement for Robust Multi-View Multi-Human 3D Pose Estimation and Tracking

Part-aware Measurement for Robust Multi-View Multi-Human 3D Pose Estimation and Tracking Part-Aware Measurement for Robust Multi-View Multi-Human 3D P

19 Oct 27, 2022
A large-scale benchmark for co-optimizing the design and control of soft robots, as seen in NeurIPS 2021.

Evolution Gym A large-scale benchmark for co-optimizing the design and control of soft robots. As seen in Evolution Gym: A Large-Scale Benchmark for E

121 Dec 14, 2022
Implementation of the paper: "SinGAN: Learning a Generative Model from a Single Natural Image"

SinGAN This is an unofficial implementation of SinGAN from someone who's been sitting right next to SinGAN's creator for almost five years. Please ref

35 Nov 10, 2022
Automated Evidence Collection for Fake News Detection

Automated Evidence Collection for Fake News Detection This is the code repo for the Automated Evidence Collection for Fake News Detection paper accept

Mrinal Rawat 2 Apr 12, 2022
CSAC - Collaborative Semantic Aggregation and Calibration for Separated Domain Generalization

CSAC Introduction This repository contains the implementation code for paper: Co

ScottYuan 5 Jul 22, 2022
DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting

DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting Created by Yongming Rao*, Wenliang Zhao*, Guangyi Chen, Yansong Tang, Zheng Z

Yongming Rao 321 Dec 27, 2022
Machine Learning From Scratch. Bare bones NumPy implementations of machine learning models and algorithms with a focus on accessibility. Aims to cover everything from linear regression to deep learning.

Machine Learning From Scratch About Python implementations of some of the fundamental Machine Learning models and algorithms from scratch. The purpose

Erik Linder-Norén 21.8k Jan 09, 2023
This repository contains the code for the paper 'PARM: Paragraph Aggregation Retrieval Model for Dense Document-to-Document Retrieval' published at ECIR'22.

Paragraph Aggregation Retrieval Model (PARM) for Dense Document-to-Document Retrieval This repository contains the code for the paper PARM: A Paragrap

Sophia Althammer 33 Aug 26, 2022
Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)

Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021) Jiaxi Jiang, Kai Zhang, Radu Timofte Computer Vision Lab, ETH Zurich, Switzerland 🔥

Jiaxi Jiang 282 Jan 02, 2023
This repository contains the code for designing risk bounded motion plans for car-like robot using Carla Simulator.

Nonlinear Risk Bounded Robot Motion Planning This code simulates the bicycle dynamics of car by steering it on the road by avoiding another static car

8 Sep 03, 2022
Official implementation of "Refiner: Refining Self-attention for Vision Transformers".

RefinerViT This repo is the official implementation of "Refiner: Refining Self-attention for Vision Transformers". The repo is build on top of timm an

101 Dec 29, 2022