Towards End-to-end Video-based Eye Tracking

Related tags

Deep LearningEVE
Overview

Towards End-to-end Video-based Eye Tracking

The code accompanying our ECCV 2020 publication and dataset, EVE.

Setup

Preferably, setup a Docker image or virtual environment (virtualenvwrapper is recommended) for this repository. Please note that we have tested this code-base in the following environments:

  • Ubuntu 18.04 / A Linux-based cluster system (CentOS 7.8)
  • Python 3.6 / Python 3.7
  • PyTorch 1.5.1

Clone this repository somewhere with:

git clone [email protected]:swook/EVE
cd EVE/

Then from the base directory of this repository, install all dependencies with:

pip install -r requirements.txt

Please note the PyTorch official installation guide for setting up the torch and torchvision packages on your specific system.

You will also need to setup ffmpeg for video decoding. On Linux, we recommend installing distribution-specific packages (usually named ffmpeg). If necessary, check out the official download page or compilation instructions.

Usage

Information on the code framework

Configuration file system

All available configuration parameters are defined in src/core/config_default.py.

In order to override the default values, one can do:

  1. Pass the parameter via a command-line parameter to train.py or inference.py. Note that in this case, replace all _ characters with -. E.g. the config. parameter refine_net_enabled becomes --refine-net-enabled 1. Note that boolean parameters can be passed in via either 0/no/false or 1/yes/true.
  2. Create a JSON file such as src/configs/eye_net.json or src/configs/refine_net.json.

The order of application are:

  1. Default parameters
  2. JSON-provided parameters, in order of JSON file declaration. For instance, in the command python train.py config1.json config2.json, config2.json overrides config1.json entries should there be any overlap.
  3. CLI-provided parameters.

Automatic logging to Google Sheets

This framework implements an automatic logging code of all parameters, loss terms, and metrics to a Google Sheets document. This is done by the gspread library. To enable this possibility, follow these instructions:

  1. Follow the instructions at https://gspread.readthedocs.io/en/latest/oauth2.html#for-end-users-using-oauth-client-id
  2. Set --gsheet-secrets-json-file to a path to the credentials JSON file, and set --gsheet-workbook-key to the document key. This key is the part after https://docs.google.com/spreadsheets/d/ and before any query or hash parameters.

An example config JSON file can be found at src/configs/sample_gsheet.json.

Training a model

To train a model, simply run python train.py from src/ with the appropriate configuration changes that are desired (see "Configuration file system" above).

Note, that in order to resume the training of an existing model you must provide the path to the output folder via the --resume-from argument.

Also, at every fresh run of train.py, a unique identifier is generated to produce a unique output folder in outputs/EVE/. Hence, it is recommended to use the Google Sheets logging feature (see "Automatic logging to Google Sheets") to keep track of your models.

Running inference

The single-sample inference script at src/inference.py takes in the same arguments as train.py but expects two arguments in particular:

  • --input-path is the path to a basler.mp4 or webcam_l.mp4 or webcam_c.mp4 or webcam_r.mp4 that exists in the EVE dataset.
  • --output-path is a path to a desired output location (ending in .mp4).

This script works for both training, validation, and test samples and shows the reference point-of-gaze ground-truth when available.

Citation

If using this code-base and/or the EVE dataset in your research, please cite the following publication:

@inproceedings{Park2020ECCV,
  author    = {Seonwook Park and Emre Aksan and Xucong Zhang and Otmar Hilliges},
  title     = {Towards End-to-end Video-based Eye-Tracking},
  year      = {2020},
  booktitle = {European Conference on Computer Vision (ECCV)}
}

Q&A

Q: How do I use this code for screen-based eye tracking?

A: This code does not offer actual eye tracking. Rather, it concerns the benchmarking of the video-based gaze estimation methods outlined in the original paper. Extending this code to support an easy-to-use software for screen-based eye tracking is somewhat non-trivial, due to requirements on camera calibration (intrinsics, extrinsics), and an efficient pipeline for accurate and stable real-time eye or face patch extraction. Thus, we consider this to be beyond the scope of this code repository.

Q: Where are the test set labels?

A: Our public evaluation server and leaderboard are hosted by Codalab at https://competitions.codalab.org/competitions/28954. This allows for evaluations on our test set to be consistent and reliable, and encourage competition in the field of video-based gaze estimation. Please note that the performance reported by Codalab is not strictly speaking comparable to the original paper's results, as we only perform evaluation on a large subset of the full test set. We recommend acquiring the updated performance figures from the leaderboard.

Comments
  • use against new dataset

    use against new dataset

    Hi,

    Can this code be used at inference time against in-the-wild mp4 that do not necessarily provide an accompanying H5? The more I work with this codebase, the more it looks obvious that w/o the mp4 being TOBII generated, this will not work. Is this true?

    thank you

    opened by inisar 0
  • File name parser

    File name parser

    File name parser can be made more robust to your own dataset files.
    Currently doesn't work for both webcam_l.mp4 and webcam_l_eyes.mp4 Please see below for filename and correction I made to make it work. src/core/inference.py try: camera_type = components[-1][:-4] except AssertionError: camera_type = camera_type[:-5]

    opened by inisar 0
  • How to synchronize the data from camera and eye tracker?

    How to synchronize the data from camera and eye tracker?

    Hi, @swook . I use OpenCV to capture the frames, what borthers me is that I don't know how to attach a timestamp to each frame and ensure the interval of each timestamp nearly the same. By using the datetime.time(), I can get the current time and regard it as the timestamp, but the interval between each of the timestamps seems to be different and has a big gap. So could you share me some details about your method which is used to synchronize the data?Or It would be very nice if you can share the source code or your method with me. Thanks.

    opened by Kihensarn 0
  • How to get the 3D gaze origin

    How to get the 3D gaze origin

    Hi, @swook Thanks for your great job, but I have a question about how to get the 3D gaze origin(determined during data pre-processing). The paper said "In pre-processing the EVEdataset, we apply a 3DMM fitting approach with interocular-distance-based scale-normalization to alleviate these issues" . However, I'm not sure about the specific process of this step. What should I do if I want to convert from landmark to 3D gaze origin? Besides, if it is possible to open some code of this part? Thanks a lot!

    opened by TeresaKumo 0
  • About the result

    About the result

    I trained the eve model with eve data, ran eval_codalab.py and got pkl file as a result. I also ran eval_codalabl.py and got pkl file from the pretrained model weights(from https://github.com/swook/EVE/releases/tag/v0.0 - eve_refinenet_CGRU_oa_skip.pt) Then, I compared these two results and the numbers seem to match. For example, from the pretrained model, I got [960. 540.] for PoG_px_final and got [963.0835 650.5635] for my model.

    However, in the eve paper, table3 shows that the PoG_px in GRU model with oa+skip is 95.59 Numbers in paper is 1/10 of the numbers i got from eval_codalab and not sure what went wrong. Are they supposed to match? If they are not supposed to match, how do you calculate the numbers?

    Also, in the result page of codalab, the gaze direction(angular error) is shown, but the eval_codalab.py doesn't store gaze direction. (Keys_to_store=['left pupil size' , 'right pupil', 'pog__px_initial', 'pog_px_final', 'timestamp']) How should I get gaze direction error in degree?

    opened by chaeyoun 1
Owner
Seonwook Park
Seonwook Park
A Momentumized, Adaptive, Dual Averaged Gradient Method for Stochastic Optimization

MADGRAD Optimization Method A Momentumized, Adaptive, Dual Averaged Gradient Method for Stochastic Optimization pip install madgrad Try it out! A best

Meta Research 774 Dec 31, 2022
A PyTorch Implementation of Gated Graph Sequence Neural Networks (GGNN)

A PyTorch Implementation of GGNN This is a PyTorch implementation of the Gated Graph Sequence Neural Networks (GGNN) as described in the paper Gated G

Ching-Yao Chuang 427 Dec 13, 2022
Applications using the GTN library and code to reproduce experiments in "Differentiable Weighted Finite-State Transducers"

gtn_applications An applications library using GTN. Current examples include: Offline handwriting recognition Automatic speech recognition Installing

Facebook Research 68 Dec 29, 2022
This is an official implementation for "ResT: An Efficient Transformer for Visual Recognition".

ResT By Qing-Long Zhang and Yu-Bin Yang [State Key Laboratory for Novel Software Technology at Nanjing University] This repo is the official implement

zhql 222 Dec 13, 2022
Modification of convolutional neural net "UNET" for image segmentation in Keras framework

ZF_UNET_224 Pretrained Model Modification of convolutional neural net "UNET" for image segmentation in Keras framework Requirements Python 3.*, Keras

209 Nov 02, 2022
Official git for "CTAB-GAN: Effective Table Data Synthesizing"

CTAB-GAN This is the official git paper CTAB-GAN: Effective Table Data Synthesizing. The paper is published on Asian Conference on Machine Learning (A

30 Dec 26, 2022
Code for PhySG: Inverse Rendering with Spherical Gaussians for Physics-based Relighting and Material Editing

PhySG: Inverse Rendering with Spherical Gaussians for Physics-based Relighting and Material Editing CVPR 2021. Project page: https://kai-46.github.io/

Kai Zhang 141 Dec 14, 2022
A Game-Theoretic Perspective on Risk-Sensitive Reinforcement Learning

Officile code repository for "A Game-Theoretic Perspective on Risk-Sensitive Reinforcement Learning"

Mathieu Godbout 1 Nov 19, 2021
Sequential Model-based Algorithm Configuration

SMAC v3 Project Copyright (C) 2016-2018 AutoML Group Attention: This package is a reimplementation of the original SMAC tool (see reference below). Ho

AutoML-Freiburg-Hannover 778 Jan 05, 2023
Sharing of contents on mitochondrial encounter networks

mito-network-sharing Sharing of contents on mitochondrial encounter networks Required: R with igraph, brainGraph, ggplot2, and XML libraries; igraph l

Stochastic Biology Group 0 Oct 01, 2021
Few-Shot Object Detection via Association and DIscrimination

Few-Shot Object Detection via Association and DIscrimination Code release of our NeurIPS 2021 paper: Few-Shot Object Detection via Association and DIs

Cao Yuhang 49 Dec 18, 2022
This repository contains the PyTorch implementation of the paper STaCK: Sentence Ordering with Temporal Commonsense Knowledge appearing at EMNLP 2021.

STaCK: Sentence Ordering with Temporal Commonsense Knowledge This repository contains the pytorch implementation of the paper STaCK: Sentence Ordering

Deep Cognition and Language Research (DeCLaRe) Lab 23 Dec 16, 2022
Official implementation of "One-Shot Voice Conversion with Weight Adaptive Instance Normalization".

One-Shot Voice Conversion with Weight Adaptive Instance Normalization By Shengjie Huang, Yanyan Xu*, Dengfeng Ke*, Mingjie Chen, Thomas Hain. This rep

31 Dec 07, 2022
Adversarial Autoencoders

Adversarial Autoencoders (with Pytorch) Dependencies argparse time torch torchvision numpy itertools matplotlib Create Datasets python create_datasets

Felipe Ducau 188 Jan 01, 2023
This repo is duplication of jwyang/faster-rcnn.pytorch

Faster RCNN Pytorch This repo is duplication of jwyang/faster-rcnn.pytorch C/C++ code are removed and easier to study. Python 3.8.5 Ubuntu 20.04.1 LTS

Kim Jihwan 1 Jan 14, 2022
System Combination for Grammatical Error Correction Based on Integer Programming

System Combination for Grammatical Error Correction Based on Integer Programming This repository contains the code and scripts that implement the syst

NUS NLP Group 0 Mar 29, 2022
A robust pointcloud registration pipeline based on correlation.

PHASER: A Robust and Correspondence-Free Global Pointcloud Registration Ubuntu 18.04+ROS Melodic: Overview Pointcloud registration using correspondenc

ETHZ ASL 101 Dec 01, 2022
The code for MM2021 paper "Multi-Level Counterfactual Contrast for Visual Commonsense Reasoning"

The Code for MM2021 paper "Multi-Level Counterfactual Contrast for Visual Commonsense Reasoning" Setting up and using the repo Get the dataset. Follow

4 Apr 20, 2022
Your interactive network visualizing dashboard

Your interactive network visualizing dashboard Documentation: Here What is Jaal Jaal is a python based interactive network visualizing tool built usin

Mohit 177 Jan 04, 2023
SCALE: Modeling Clothed Humans with a Surface Codec of Articulated Local Elements (CVPR 2021)

SCALE: Modeling Clothed Humans with a Surface Codec of Articulated Local Elements (CVPR 2021) This repository contains the official PyTorch implementa

Qianli Ma 133 Jan 05, 2023