Proposal, Tracking and Segmentation (PTS): A Cascaded Network for Video Object Segmentation

Related tags

Deep LearningPTSNet
Overview

Proposal, Tracking and Segmentation (PTS): A Cascaded Network for Video Object Segmentation

By Qiang Zhou*, Zilong Huang*, Lichao Huang, Han Shen, Yongchao Gong, Chang Huang, Wenyu Liu, Xinggang Wang.(* means equal contribution)

This code is the implementation mainly for DAVIS 2017 dataset. For more detail, please refer to our paper.

Architecture


Overview of our proposed PTSNet for video object segmentation. OPN is designed for generating proposals of the interested objects and OTN aims to distinguish which one of the proposals is the best. Finally, DRSN does the final pixel level tracking(segmentation) task. Note in our implementation we couple OPN and OTN as a whole network, and spearate DRSN out under engineering consideration.

Usage

Preparation

  1. Install PyTorch 1.0 and necessary libraries like opencv, PIL etc.

  2. There are some native CUDA implementations, InPlace-ABN and MaskRCNN Operators, which must be compiled at the very start.

    # Before you compile, you need to figure out several things:
    # - The CUDA kernels supported by your GPU, here we use `sm_52`, `sm_61` and `sm_70` for NVIDIA Titan V.
    # - `cuda` and `nvcc` paths in your operating system, which exist usually in `/usr/local/cuda` and `/usr/local/cuda/bin/nvcc` respectively.
    # InPlace-ABN_0.4   (PyTorch 0.4)
    cd model/inplace_ABN_0.4
    bash build.sh
    # OR you could choose the 1.0 version of inplace ABN.
    # InPlace-ABN_1.0   (PyTorch 1.0)
    cd model/inplace_ABN    # It is dynamically compiled when running (gcc > 4.9)
    
    # MaskRCNN Operators (PyTorch 0.4)
    cd coupled_otn_opn/tracking/maskrcnn/lib
    bash make.sh
  3. You can train PTSNet from scratch or just evaluate our pretrained model.

    • Train it from scratch, you need to download:

       # DRSN: wget "https://download.pytorch.org/models/resnet50-19c8e357.pth" -O drsn/init_models/resnet50-19c8e357.pth
       # OPN: wget "https://drive.google.com/open?id=1ma1fNmEvS9dJLOIcm1FRzYofVS_t3aI3" -O coupled_otn_opn/tracking/maskrcnn/data/X-152-32x8d-IN5k.pkl
       # If you want to use our pretrained OTN:
       #   wget https://drive.google.com/open?id=12bF1dRlEUZoQz3Qcr2WD3ojqNHzbCrjf, put it into `coupled_otn_opn/models/mdnet_davis_50cyche.pth`
       # Else please modify from py-MDNet(https://github.com/HyeonseobNam/py-MDNet) to train OTN on DAVIS by yourself.
    • If you want to use our pretrained model to do the evaluation, you need to download:

       # DRSN: https://drive.google.com/open?id=116yXnqX43BZ7kEgdzUhIeTSn1dbvcE2F, put it into `drsn/snapshots/drsn_yvos_10w_davis_3p5w.pth`
       # OPN: wget "https://drive.google.com/open?id=1ma1fNmEvS9dJLOIcm1FRzYofVS_t3aI3" -O coupled_otn_opn/tracking/maskrcnn/data/X-152-32x8d-IN5k.pkl
       # OTN: https://drive.google.com/open?id=12bF1dRlEUZoQz3Qcr2WD3ojqNHzbCrjf, put it into `coupled_otn_opn/models/mdnet_davis_50cycle.pth`
  4. Dataset

    • YouTube-VOS: Download from YouTube-VOS, note we only need the training part(train_all_frames.zip), totally about 41G. Unzip, move and rename it to drsn/dataset/yvos.
    • DAVIS: Download from DAVIS, note we only need the 480p version(DAVIS-2017-trainval-480p.zip). Unzip, move and rename it to drsn/dataset/DAVIS/trainval and coupled_otn_opn/DAVIS/trainval. Here you need to make a subdirectory of trainval directory to store the dataset.

    And make sure to put the files as the following structure:

    .
    ├── drsn
    │   ├── dataset
    │   │   ├── DAVIS
    │   │   │   └── trainval
    │   │   │       ├── Annotations
    │   │   │       ├── ImageSets
    │   │   │       └── JPEGImages
    │   │   └── yvos
    │   │       └── train_all_frames
    │   ├── init_model
    │   │   └── resnet50-19c8e357.pth
    │   └── snapshots
    │       └── drsn_yvos_10w_davis_3p5w.pth
    └── coupled_otn_opn
        ├── DAVIS
        │   └── trainval
        ├── models
        │   └── mdnet_davis_50cycle.pth
        └── tracking
            └── maskrcnn
                └── data
                    └── X-152-32x8d-FPN-IN5k.pkl
    

Train and Evaluate

  • Firstly, check the directory of coupled_otn_opn and follow the README.md inside to generate our proposals. You can also skip this step for we have provided generated proposals in drsn/dataset/result_davis directory.
  • Secondly, enter drsn and check do_train_eval.sh to train and evaluate.
  • Finally, we also provide result masks by our PTSNet in result-masks-GoogleDrive. The quantitative results are measured by DAVIS official matlab toolbox.
J Mean F Mean G Mean
Avg 71.6 77.7 74.7

Acknowledgment

The work was mainly done during an internship at Horizon Robotics.

Citing PTSNet

If you find PTSNet useful in your research, please consider citing:

@article{ptsnet2019,
        title={Proposal, Tracking and Segmentation (PTS): A Cascaded Network for Video Object Segmentation},
        author={Zhou, Qiang and Huang, Zilong and Huang, Lichao and Han, Shen and Gong, Yongchao and Huang, Chang and Liu, Wenyu and Wang, Xinggang},
        journal = {arXiv preprint arXiv:1907.01203v2},
        year={2019}
        }

Thanks to the Third Party Libs

Owner
Forest
If a bullet's going to get you, it has already been fired.
Forest
Lane follower: Lane-detector (OpenCV) + Object-detector (YOLO5) + CAN-bus

Lane Follower This code is for the lane follower, including perception and control, as shown below. Environment Hardware Industrial Camera Intel-NUC(1

Siqi Fan 3 Jul 07, 2022
A compendium of useful, interesting, inspirational usage of pandas functions, each example will be an ipynb file

Pandas_by_examples A compendium of useful/interesting/inspirational usage of pandas functions, each example will be an ipynb file What is this reposit

Guangyuan(Frank) Li 32 Nov 20, 2022
SPRING is a seq2seq model for Text-to-AMR and AMR-to-Text (AAAI2021).

SPRING This is the repo for SPRING (Symmetric ParsIng aNd Generation), a novel approach to semantic parsing and generation, presented at AAAI 2021. Wi

Sapienza NLP group 98 Dec 21, 2022
Implementation of Bottleneck Transformer in Pytorch

Bottleneck Transformer - Pytorch Implementation of Bottleneck Transformer, SotA visual recognition model with convolution + attention that outperforms

Phil Wang 621 Jan 06, 2023
Implementation of the method proposed in the paper "Neural Descriptor Fields: SE(3)-Equivariant Object Representations for Manipulation"

Neural Descriptor Fields (NDF) PyTorch implementation for training continuous 3D neural fields to represent dense correspondence across objects, and u

167 Jan 06, 2023
This repository contains Prior-RObust Bayesian Optimization (PROBO) as introduced in our paper "Accounting for Gaussian Process Imprecision in Bayesian Optimization"

Prior-RObust Bayesian Optimization (PROBO) Introduction, TOC This repository contains Prior-RObust Bayesian Optimization (PROBO) as introduced in our

Julian Rodemann 2 Mar 19, 2022
Generating Digital Painting Lighting Effects via RGB-space Geometry (SIGGRAPH2020/TOG2020)

Project PaintingLight PaintingLight is a project conducted by the Style2Paints team, aimed at finding a method to manipulate the illumination in digit

651 Dec 29, 2022
HomeAssitant custom integration for dyson

HomeAssistant Custom Integration for Dyson This custom integration is still under development. This is a HA custom integration for dyson. There are se

Xiaonan Shen 232 Dec 31, 2022
Self-Guided Contrastive Learning for BERT Sentence Representations

Self-Guided Contrastive Learning for BERT Sentence Representations This repository is dedicated for releasing the implementation of the models utilize

Taeuk Kim 16 Dec 04, 2022
StyleGAN2-ada for practice

This version of the newest PyTorch-based StyleGAN2-ada is intended mostly for fellow artists, who rarely look at scientific metrics, but rather need a working creative tool. Tested on Python 3.7 + Py

vadim epstein 170 Nov 16, 2022
HyperCube: Implicit Field Representations of Voxelized 3D Models

HyperCube: Implicit Field Representations of Voxelized 3D Models Authors: Magdalena Proszewska, Marcin Mazur, Tomasz Trzcinski, Przemysław Spurek [Pap

Magdalena Proszewska 3 Mar 09, 2022
Codes for paper "Towards Diverse Paragraph Captioning for Untrimmed Videos". CVPR 2021

Towards Diverse Paragraph Captioning for Untrimmed Videos This repository contains PyTorch implementation of our paper Towards Diverse Paragraph Capti

Yuqing Song 61 Oct 11, 2022
Vector.ai assignment

fabio-tests-nisargatman Low Level Approach: ###Tables: continents: id*, name, population, area, createdAt, updatedAt countries: id*, name, population,

Ravi Pullagurla 1 Nov 09, 2021
Implémentation en pyhton de l'article Depixelizing pixel art de Johannes Kopf et Dani Lischinski

Implémentation en pyhton de l'article Depixelizing pixel art de Johannes Kopf et Dani Lischinski

TableauBits 3 May 29, 2022
A large dataset of 100k Google Satellite and matching Map images, resembling pix2pix's Google Maps dataset.

Larger Google Sat2Map dataset This dataset extends the aerial ⟷ Maps dataset used in pix2pix (Isola et al., CVPR17). The provide script download_sat2m

34 Dec 28, 2022
Symbolic Music Generation with Diffusion Models

Symbolic Music Generation with Diffusion Models Supplementary code release for our work Symbolic Music Generation with Diffusion Models. Installation

Magenta 119 Jan 07, 2023
SwinTrack: A Simple and Strong Baseline for Transformer Tracking

SwinTrack This is the official repo for SwinTrack. A Simple and Strong Baseline Prerequisites Environment conda (recommended) conda create -y -n SwinT

LitingLin 196 Jan 04, 2023
Multi-resolution SeqMatch based long-term Place Recognition

MRS-SLAM for long-term place recognition In this work, we imply an multi-resolution sambling based visual place recognition method. This work is based

METASLAM 6 Dec 06, 2022
rastrainer is a QGIS plugin to training remote sensing semantic segmentation model based on PaddlePaddle.

rastrainer rastrainer is a QGIS plugin to training remote sensing semantic segmentation model based on PaddlePaddle. UI TODO Init UI. Add Block. Add l

deepbands 5 Mar 04, 2022
Example for AUAV 2022 with obstacle avoidance.

AUAV 2022 Sample This is a sample PX4 based quadrotor path planning framework based on Ubuntu 20.04 and ROS noetic for the IEEE Autonomous UAS 2022 co

James Goppert 11 Sep 16, 2022