MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images

Overview

MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images

This repository contains the implementation of our paper MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images.

You can find detailed usage instructions for training your own models and using pretrained models below.

If you find our code useful, please cite:

@InProceedings{MetaAvatar:NeurIPS:2021,
  title = {MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images},
  author = {Shaofei Wang and Marko Mihajlovic and Qianli Ma and Andreas Geiger and Siyu Tang},
  booktitle = {Advances in Neural Information Processing Systems},
  year = {2021}
}

Installation

This repository has been tested on the following platform:

  1. Python 3.7, PyTorch 1.7.1 with CUDA 10.2 and cuDNN 7.6.5, Ubuntu 20.04

To clone the repo, run either:

git clone --recursive https://github.com/taconite/MetaAvatar-release.git

or

git clone https://github.com/taconite/MetaAvatar-release.git
git submodule update --init --recursive

First you have to make sure that you have all dependencies in place. The simplest way to do so, is to use anaconda.

You can create an anaconda environment called meta-avatar using

conda env create -f environment.yml
conda activate meta-avatar

(Optional) if you want to use the evaluation code under evaluation/, then you need to install kaolin. Download the code from the kaolin repository, checkout to commit e7e513173bd4159ae45be6b3e156a3ad156a3eb9 and install it according to the instructions.

Build the dataset

To prepare the dataset for training/fine-tuning/evaluation, you have to first download the CAPE dataset from the CAPE website.

  1. Download SMPL v1.0, clean-up the chumpy objects inside the models using this code, and rename the files and extract them to ./body_models/smpl/, eventually, the ./body_models folder should have the following structure:
    body_models
     └-- smpl
     	├-- male
     	|   └-- model.pkl
     	└-- female
     	    └-- model.pkl
    
    

(Optional) if you want to use the evaluation code under evaluation/, then you need to download all the .pkl files from IP-Net repository and put them under ./body_models/misc/.

Finally, run the following script to extract necessary SMPL parameters used in our code:

python extract_smpl_parameters.py

The extracted SMPL parameters will be save into ./body_models/misc/.

  1. Extract CAPE dataset to an arbitrary path, denoted as ${CAPE_ROOT}. The extracted dataset should have the following structure:
    ${CAPE_ROOT}
     ├-- 00032
     ├-- 00096
     |   ...
     ├-- 03394
     └-- cape_release
    
    
  2. Create data directory under the project directory.
  3. Modify the parameters in preprocess/build_dataset.sh accordingly (i.e. modify the --dataset_path to ${CAPE_ROOT}) to extract training/fine-tuning/evaluation data.
  4. Run preprocess/build_dataset.sh to preprocess the CAPE dataset.

(Optional) if you want evaluate performance on interpolation task, then you need to process CAPE data again in order to generate processed data at full framerate. Simply comment the first command and uncomment the second command in preprocess/build_dataset.sh and run the script.

Pre-trained models

We provide pre-trained models, including 1) forward/backward skinning networks for full pointcloud (stage 0) 2) forward/backward skinning networks for depth pointcloud (stage 0) 3) meta-learned static SDF (stage 1) 3) meta-learned hypernetwork (stage 2) . After downloading them, please put them in respective folders under ./out/metaavatar.

Fine-tuning fromt the pre-trained model

We provide script to fine-tune subject/cloth-type specific avatars in batch. Simply run:

bash run_fine_tuning.sh

And it will conduct fine-tuning with default setting (subject 00122 with shortlong). You can comment/uncomment/add lines in jobs/splits to modify data splits.

Training

To train new networks from scratch, run

python train.py --num-workers 8 configs/meta-avatar/${config}.yaml

You can train the two stage 0 models in parallel, while stage 1 model depends on stage 0 models and stage 2 model depends on stage 1 model.

You can monitor on http://localhost:6006 the training process using tensorboard:

tensorboard --logdir ${OUTPUT_DIR}/logs --port 6006

where you replace ${OUTPUT_DIR} with the respective output directory.

Evaluation

To evaluate the generated meshes, use the following script:

bash run_evaluation.sh

Again, it will conduct evaluation with default setting (subject 00122 with shortlong). You can comment/uncomment/add lines in jobs/splits to modify data splits.

License

We employ MIT License for the MetaAvatar code, which covers

extract_smpl_parameters.py
run_fine_tuning.py
train.py
configs
jobs/
depth2mesh/
preprocess/

The SIREN networks are borrowed from the official SIREN repository. Mesh extraction code is borrowed from the DeeSDF repository.

Modules not covered by our license are:

  1. Modified code from IP-Net (./evaluation);
  2. Modified code from SMPL-X (./human_body_prior); for these parts, please consult their respective licenses and cite the respective papers.
Python implementation of NARS (Non-Axiomatic-Reasoning-System)

Python implementation of NARS (Non-Axiomatic-Reasoning-System)

Bowen XU 11 Dec 20, 2022
This repository consists of Blender python scripts and corresponding assets to generate variants of the CANDLE dataset

candle-simulator This repository consists of Blender python scripts and corresponding assets to generate variants of the IITH-CANDLE dataset. The rend

1 Dec 15, 2021
I tried to apply the CAM algorithm to YOLOv4 and it worked.

YOLOV4:You Only Look Once目标检测模型在pytorch当中的实现 2021年2月7日更新: 加入letterbox_image的选项,关闭letterbox_image后网络的map得到大幅度提升。 目录 性能情况 Performance 实现的内容 Achievement

55 Dec 05, 2022
Block Sparse movement pruning

Movement Pruning: Adaptive Sparsity by Fine-Tuning Magnitude pruning is a widely used strategy for reducing model size in pure supervised learning; ho

Hugging Face 54 Dec 20, 2022
This is a code repository for paper OODformer: Out-Of-Distribution Detection Transformer

OODformer: Out-Of-Distribution Detection Transformer This repo is the official the implementation of the OODformer: Out-Of-Distribution Detection Tran

34 Dec 02, 2022
A library for researching neural networks compression and acceleration methods.

A library for researching neural networks compression and acceleration methods.

Intel Labs 100 Dec 29, 2022
This repository contains tutorials for the py4DSTEM Python package

py4DSTEM Tutorials This repository contains tutorials for the py4DSTEM Python package. For more information about py4DSTEM, including installation ins

11 Dec 23, 2022
The project was to detect traffic signs, based on the Megengine framework.

trafficsign 赛题 旷视AI智慧交通开源赛道,初赛1/177,复赛1/12。 本赛题为复杂场景的交通标志检测,对五种交通标志进行识别。 框架 megengine 算法方案 网络框架 atss + resnext101_32x8d 训练阶段 图片尺寸 最终提交版本输入图片尺寸为(1500,2

20 Dec 02, 2022
PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition, CVPR 2018

PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place

Mikaela Uy 294 Dec 12, 2022
Implementation of Perceiver, General Perception with Iterative Attention, in Pytorch

Perceiver - Pytorch Implementation of Perceiver, General Perception with Iterative Attention, in Pytorch Install $ pip install perceiver-pytorch Usage

Phil Wang 876 Dec 29, 2022
ManipNet: Neural Manipulation Synthesis with a Hand-Object Spatial Representation - SIGGRAPH 2021

ManipNet: Neural Manipulation Synthesis with a Hand-Object Spatial Representation - SIGGRAPH 2021 Dataset Code Demos Authors: He Zhang, Yuting Ye, Tak

HE ZHANG 194 Dec 06, 2022
Randomizes the warps in a stock pokeemerald repo.

pokeemerald warp randomizer Randomizes the warps in a stock pokeemerald repo. Usage Instructions Install networkx and matplotlib via pip3 or similar.

Max Thomas 6 Mar 17, 2022
Official implementation of ETH-XGaze dataset baseline

ETH-XGaze baseline Official implementation of ETH-XGaze dataset baseline. ETH-XGaze dataset ETH-XGaze dataset is a gaze estimation dataset consisting

Xucong Zhang 134 Jan 03, 2023
Yolact-keras实例分割模型在keras当中的实现

Yolact-keras实例分割模型在keras当中的实现 目录 性能情况 Performance 所需环境 Environment 文件下载 Download 训练步骤 How2train 预测步骤 How2predict 评估步骤 How2eval 参考资料 Reference 性能情况 训练数

Bubbliiiing 11 Dec 26, 2022
FedML: A Research Library and Benchmark for Federated Machine Learning

FedML: A Research Library and Benchmark for Federated Machine Learning 📄 https://arxiv.org/abs/2007.13518 News 2021-02-01 (Award): #NeurIPS 2020# Fed

FedML-AI 2.3k Jan 08, 2023
Code for the Higgs Boson Machine Learning Challenge organised by CERN & EPFL

A method to solve the Higgs boson challenge using Least Squares - Novae This project is the Project 1 of EPFL CS-433 Machine Learning. The project is

Giacomo Orsi 1 Nov 09, 2021
Pytorch implementation of the paper "Class-Balanced Loss Based on Effective Number of Samples"

Class-balanced-loss-pytorch Pytorch implementation of the paper Class-Balanced Loss Based on Effective Number of Samples presented at CVPR'19. Yin Cui

Vandit Jain 697 Dec 29, 2022
PyTorch - Python + Nim

Master Release Pytorch - Py + Nim A Nim frontend for pytorch, aiming to be mostly auto-generated and internally using ATen. Because Nim compiles to C+

Giovanni Petrantoni 425 Dec 22, 2022
Multispectral Object Detection with Yolov5

Multispectral-Object-Detection Intro Official Code for Cross-Modality Fusion Transformer for Multispectral Object Detection. Multispectral Object Dete

Richard Fang 121 Jan 01, 2023
Robust fine-tuning of zero-shot models

Robust fine-tuning of zero-shot models This repository contains code for the paper Robust fine-tuning of zero-shot models by Mitchell Wortsman*, Gabri

224 Dec 29, 2022