A Novel Incremental Learning Driven Instance Segmentation Framework to Recognize Highly Cluttered Instances of the Contraband Items

Overview

A Novel Incremental Learning Driven Instance Segmentation Framework to Recognize Highly Cluttered Instances of the Contraband Items

This repository contains the source code (developed using TensorFlow 2.1.0 and Keras 2.3.0) for the proposed incremental instance segmentation framework.

Block-Diagram

Block Diagram of the Proposed Framework

The documentation related to installation, configuration, dataset, training protocols is given below. Moroever, the detailed architectural description of the CIE-Net is available in 'model_summary.txt' file.

Installation and Configuration

  1. Platform: Anaconda and MATLAB R2020a (with deep learning, image processing and computer vision toolbox).

  2. Install required packages from the provided ‘environment.yml’ file or alternatively you can install following packages yourself:

    • Python 3.7.9 or above
    • TensorFlow 2.1.0 or above
    • Keras 2.3.0 or above
    • OpenCV 4.2 or above
    • imgaug 0.2.9 or above
    • tqdm
  3. Download the desired dataset (the dataset description file is also available in this repository):

  4. The mask-level annotations for the baggage X-ray datasets can be downloaded from the following links:

  5. The box-level annotations for both baggage X-ray datasets are already released by the dataset authors.

  6. For COCO dataset, please use the MaskAPIs (provided by the dataset authors) to generate the mask-level and box-level annotations from the JSON files. We have also uploaded these APIs within this repository.

  7. For training, please provide the training configurations of the desired dataset in ‘config.py’ file.

  8. Afterward, create the two folders named as 'trainingDataset' and 'testingDataset', and arrange the dataset scans w.r.t the following hierarchy:

├── trainingDataset
│   ├── trainGT_1
│   │   └── tr_image_1.png
│   │   └── tr_image_2.png
│   │   ...
│   │   └── tr_image_n.png
│   ...
│   ├── trainGT_K
│   │   └── tr_image_1.png
│   │   └── tr_image_2.png
│   │   ...
│   │   └── tr_image_m.png
│   ├── trainImages_1
│   │   └── tr_image_1.png
│   │   └── tr_image_2.png
│   │   ...
│   │   └── tr_image_n.png
│   ...
│   ├── trainImages_K
│   │   └── tr_image_1.png
│   │   └── tr_image_2.png
│   │   ...
│   │   └── tr_image_m.png
│   ├── valGT_1
│   │   └── va_image_1.png
│   │   └── va_image_2.png
│   │   ...
│   │   └── va_image_o.png
│   ...
│   ├── valGT_K
│   │   └── va_image_1.png
│   │   └── va_image_2.png
│   │   ...
│   │   └── va_image_p.png
│   ├── valImages_1
│   │   └── va_image_1.png
│   │   └── va_image_2.png
│   │   ...
│   │   └── va_image_o.png
│   ...
│   ├── valImages_K
│   │   └── va_image_1.png
│   │   └── va_image_2.png
│   │   ...
│   │   └── va_image_p.png

├── testingDataset
│   ├── test_images
│   │   └── te_image_1.png
│   │   └── te_image_2.png
│   │   ...
│   │   └── te_image_k.png
│   ├── test_annotations
│   │   └── te_image_1.png
│   │   └── te_image_2.png
│   │   ...
│   │   └── te_image_k.png
│   ├── segmentation_results1
│   │   └── te_image_1.png
│   │   └── te_image_2.png
│   │   ...
│   │   └── te_image_k.png
│   ...
│   ├── segmentation_resultsK
│   │   └── te_image_1.png
│   │   └── te_image_2.png
│   │   ...
│   │   └── te_image_k.png
- Note: the images and annotations should have same name and extension (preferably png).
  1. The 'segmentation_resultsK' folder in 'testingDataset' will contains the results of K-instance-aware segmentation.
  2. The summary of the proposed CIE-Net model is available in 'model_summary.txt'.

Steps

  1. Use 'trainer.py' to incrementally train the CIE-Net. The following script will also save the model instances in the h5 file. For MvRF-CNN, use 'trainer2.py' script.
  2. Use 'tester.py' file to extract segmentation results for each model instance (the model results will be saved in 'segmentation_resultsk' folder for kth model instance). For MvRF-CNN, use 'tester2.py' script.
  3. We have also provided some converter scripts to convert e.g. original SIXray XML annotations into MATLAB structures, to port TF keras models into MATLAB etc.
  4. Also, we have provided some utility files (in the 'utils' folder) to resize dataset scans, to generate bounding boxes from CIE-Net mask output, to change the coloring scheme of the CIE-Net outputs for better visualization, and to apply post-processing etc.
  5. Please note that to run MvRF-CNN, the images have to be resized to the resolution of 320x240x3. The resizer script is in the 'utils' folder.

Citation

If you use the proposed incremental instance segmentation framework (or any part of this code) in your work, then please cite the following paper:

@article{cienet,
  title   = {A Novel Incremental Learning Driven Instance Segmentation Framework to Recognize Highly Cluttered Instances of the Contraband Items},
  author  = {Taimur Hassan and Samet Akcay and Mohammed Bennamoun and Salman Khan and Naoufel Werghi},
  journal = {IEEE Transactions on Systems, Man, and Cybernetics: Systems},
  year = {2021}
}

Contact

Please feel free to contact us in case of any query at: [email protected]

Owner
Taimur Hassan
Taimur Hassan
NNR conformation conditional and global probabilities estimation and analysis in peptides or proteins fragments

NNR and global probabilities estimation and analysis in peptides or protein fragments This module calculates global and NNR conformation dependent pro

0 Jul 15, 2021
Reinforcement Learning Theory Book (rus)

Reinforcement Learning Theory Book (rus)

qbrick 206 Nov 27, 2022
Python library for tracking human heads with FLAME (a 3D morphable head model)

Video Head Tracker 3D tracking library for human heads based on FLAME (a 3D morphable head model). The tracking algorithm is inspired by face2face. It

61 Dec 25, 2022
Implementation of Deformable Attention in Pytorch from the paper "Vision Transformer with Deformable Attention"

Deformable Attention Implementation of Deformable Attention from this paper in Pytorch, which appears to be an improvement to what was proposed in DET

Phil Wang 128 Dec 24, 2022
Code for the paper "Next Generation Reservoir Computing"

Next Generation Reservoir Computing This is the code for the results and figures in our paper "Next Generation Reservoir Computing". They are written

OSU QuantInfo Lab 105 Dec 20, 2022
BlockUnexpectedPackets - Preventing BungeeCord CPU overload due to Layer 7 DDoS attacks by scanning BungeeCord's logs

BlockUnexpectedPackets This script automatically blocks DDoS attacks that are sp

SparklyPower 3 Mar 31, 2022
Live Hand Tracking Using Python

Live-Hand-Tracking-Using-Python Project Description: In this project, we will be

Hassan Shahzad 2 Jan 06, 2022
Provably Rare Gem Miner.

Provably Rare Gem Miner just another random project by yoyoismee.eth useful link main site market contract useful thing you should know read contract

34 Nov 22, 2022
The second project in Python course on FCC

Assignment Write a function named add_time that takes in two required parameters and one optional parameter: a start time in the 12-hour clock format

Denise T 1 Dec 13, 2021
The audio-video synchronization of MKV Container Format is exploited to achieve data hiding

The audio-video synchronization of MKV Container Format is exploited to achieve data hiding, where the hidden data can be utilized for various management purposes, including hyper-linking, annotation

Maxim Zaika 1 Nov 17, 2021
Official code for 'Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentationon Complex Urban Driving Scenes'

PEBAL This repo contains the Pytorch implementation of our paper: Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentationon Complex Urba

Yu Tian 115 Dec 29, 2022
This project hosts the code for implementing the ISAL algorithm for object detection and image classification

Influence Selection for Active Learning (ISAL) This project hosts the code for implementing the ISAL algorithm for object detection and image classifi

25 Sep 11, 2022
FairyTailor: Multimodal Generative Framework for Storytelling

FairyTailor: Multimodal Generative Framework for Storytelling

Eden Bens 172 Dec 30, 2022
Sound Source Localization for AI Grand Challenge 2021

Sound-Source-Localization Sound Source Localization study for AI Grand Challenge 2021 (sponsored by NC Soft Vision Lab) Preparation 1. Place the data-

sanghoon 19 Mar 29, 2022
Code for "Typilus: Neural Type Hints" PLDI 2020

Typilus A deep learning algorithm for predicting types in Python. Please find a preprint here. This repository contains its implementation (src/) and

47 Nov 08, 2022
Code for the paper: Hierarchical Reinforcement Learning With Timed Subgoals, published at NeurIPS 2021

Hierarchical reinforcement learning with Timed Subgoals (HiTS) This repository contains code for reproducing experiments from our paper "Hierarchical

Autonomous Learning Group 21 Dec 03, 2022
Rafael Project- Classifying rockets to different types using data science algorithms.

Rocket-Classify Rafael Project- Classifying rockets to different types using data science algorithms. In this project we received data base with data

Hadassah Engel 5 Sep 18, 2021
SeqTR: A Simple yet Universal Network for Visual Grounding

SeqTR This is the official implementation of SeqTR: A Simple yet Universal Network for Visual Grounding, which simplifies and unifies the modelling fo

seanZhuh 76 Dec 24, 2022
Repository of continual learning papers

Continual learning paper repository This repository contains an incomplete (but dynamically updated) list of papers exploring continual learning in ma

29 Jan 05, 2023
Extracts data from the database for a graph-node and stores it in parquet files

subgraph-extractor Extracts data from the database for a graph-node and stores it in parquet files Installation For developing, it's recommended to us

Cardstack 0 Jan 10, 2022