Spatially-Adaptive Pixelwise Networks for Fast Image Translation, CVPR 2021

Related tags

Deep LearningASAPNet
Overview

Image Translation with ASAPNets

Spatially-Adaptive Pixelwise Networks for Fast Image Translation, CVPR 2021

Webpage | Paper | Video

Installation

install requirements:

pip install -r requirements.txt

Code Structure

The code is heavily based on the official implementation of SPADE, and therefore has the saome structure:

  • train.py, test.py: the entry point for training and testing.
  • trainers/pix2pix_trainer.py: harnesses and reports the progress of training.
  • models/pix2pix_model.py: creates the networks, and compute the losses.
  • models/networks/: defines the architecture of all models.
  • options/: creates option lists using argparse package. More individuals are dynamically added in other files as well. Please see the section below.
  • data/: defines the class for loading images and label maps.

The ASAPNets generator is implementaed in:

  • models/networks/generator: defines the architecture of the ASAPNets generator.

Dataset Preparation

facades

run:

cd data 
bash facadesHR_download_and_extract.sh

This will extract the facades full resolution images into datasets/facadesHR.

cityscapes

download the dataset into datasets/cityscapes and arrange in folders: train_images, train_labels, val_images, val_labels

Generating Images Using Pretrained Models

Pretraned models can be downloaded from here. Save the models under the checkpoints/ folder. Images can be generated using the command:

# Facades 512
bash test_facades512.sh

# Facades 1024
bash test_facades512.sh

# Cityscapes
bash test_cityscapes.sh

The outputs images will appear at the./results/ folder.

Training New Models

New models can be trained with the following commands. Prepare dataset in the ./datasets/ folder. Arrange in folders: train_images, train_labels, val_images, val_labels . For custom datasets, the easiest way is to use ./data/custom_dataset.py by specifying the option --dataset_mode custom, along with --label_dir [path_to_labels] --image_dir [path_to_images]. You also need to specify options such as --label_nc for the number of label classes in the dataset, --contain_dontcare_label to specify whether it has an unknown label, or --no_instance to denote the dataset doesn't have instance maps.

Run:

python train.py --name [experiment_name] --dataset_mode custom --label_dir [path_to_labels] -- image_dir [path_to_images] --label_nc [num_labels]

There are many additional options you can specify, please explore the ./options files. To specify the number of GPUs to utilize, use --gpu_ids.

Testing

Testing is similar to testing pretrained models.

python test.py --name [name_of_experiment] --dataset_mode [dataset_mode] --dataroot [path_to_dataset]

you can load the parameters used from training by specifying --load_from_opt_file.

Acknowledgments

This code is heavily based on the official implementation of SPADE. We thank the authors for sharing their code publicly!

License

Attribution-NonCommercial-ShareAlike 4.0 International (see file).

Citation

@inproceedings{RottShaham2020ASAP,
  title={Spatially-Adaptive Pixelwise Networks for Fast Image Translation},
  author={Rott Shaham, Tamar and Gharbi, Michael and Zhang, Richard and Shechtman, Eli and Michaeli, Tomer},
  booktitle={Computer Vision and Pattern Recognition (CVPR)},
  year={2021}
}
Owner
Tamar Rott Shaham
Tamar Rott Shaham
DeepFaceLive - Live Deep Fake in python, Real-time face swap for PC streaming or video calls

DeepFaceLive - Live Deep Fake in python, Real-time face swap for PC streaming or video calls

8.3k Dec 31, 2022
Multilingual Image Captioning

Multilingual Image Captioning Authors: Bhavitvya Malik, Gunjan Chhablani Demo Link: https://huggingface.co/spaces/flax-community/multilingual-image-ca

Gunjan Chhablani 32 Nov 25, 2022
JDet is Object Detection Framework based on Jittor.

JDet is Object Detection Framework based on Jittor.

135 Dec 14, 2022
PyTorch code of my WACV 2022 paper Improving Model Generalization by Agreement of Learned Representations from Data Augmentation

Improving Model Generalization by Agreement of Learned Representations from Data Augmentation (WACV 2022) Paper ArXiv Why it matters? When data augmen

Rowel Atienza 5 Mar 04, 2022
Code release for "Masked-attention Mask Transformer for Universal Image Segmentation"

Mask2Former: Masked-attention Mask Transformer for Universal Image Segmentation Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, Ro

Meta Research 1.2k Jan 02, 2023
clustering moroccan stocks time series data using k-means with dtw (dynamic time warping)

Moroccan Stocks Clustering Context Hey! we don't always have to forecast time series am I right ? We use k-means to cluster about 70 moroccan stock pr

Ayman Lafaz 7 Oct 18, 2022
Few-shot Learning of GPT-3

Few-shot Learning With Language Models This is a codebase to perform few-shot "in-context" learning using language models similar to the GPT-3 paper.

Tony Z. Zhao 224 Dec 28, 2022
This is an official implementation for "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" on Semantic Segmentation.

Swin Transformer for Semantic Segmentation of satellite images This repo contains the supported code and configuration files to reproduce semantic seg

23 Oct 10, 2022
Data visualization app for H&M competition in kaggle

handm_data_visualize_app Data visualization app by streamlit for H&M competition in kaggle. competition page: https://www.kaggle.com/competitions/h-an

Kyohei Uto 12 Apr 30, 2022
Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set (CVPRW 2019). A PyTorch implementation.

Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set —— PyTorch implementation This is an unofficial offici

Sicheng Xu 833 Dec 28, 2022
1st-in-MICCAI2020-CPM - Combined Radiology and Pathology Classification

Combined Radiology and Pathology Classification MICCAI 2020 Combined Radiology a

22 Dec 08, 2022
TianyuQi 10 Dec 11, 2022
Train SN-GAN with AdaBelief

SNGAN-AdaBelief Train a state-of-the-art spectral normalization GAN with AdaBelief https://github.com/juntang-zhuang/Adabelief-Optimizer Acknowledgeme

Juntang Zhuang 10 Jun 11, 2022
Politecnico of Turin Thesis: "Implementation and Evaluation of an Educational Chatbot based on NLP Techniques"

THESIS_CAIRONE_FIORENTINO Politecnico of Turin Thesis: "Implementation and Evaluation of an Educational Chatbot based on NLP Techniques" GENERATE TOKE

cairone_fiorentino97 1 Dec 10, 2021
DeepSTD: Mining Spatio-temporal Disturbances of Multiple Context Factors for Citywide Traffic Flow Prediction

DeepSTD: Mining Spatio-temporal Disturbances of Multiple Context Factors for Citywide Traffic Flow Prediction This is the implementation of DeepSTD in

5 Sep 26, 2022
DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting

DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting Created by Yongming Rao*, Wenliang Zhao*, Guangyi Chen, Yansong Tang, Zheng Z

Yongming Rao 321 Dec 27, 2022
AI4Good project for detecting waste in the environment

Detect waste AI4Good project for detecting waste in environment. www.detectwaste.ml. Our latest results were published in Waste Management journal in

108 Dec 25, 2022
CountDown to New Year and shoot fireworks

CountDown and Shoot Fireworks About App This is an small application make you re

5 Dec 31, 2022
Flexible Option Learning - NeurIPS 2021

Flexible Option Learning This repository contains code for the paper Flexible Option Learning presented as a Spotlight at NeurIPS 2021. The implementa

Martin Klissarov 7 Nov 09, 2022
Deep Inside Convolutional Networks - This is a caffe implementation to visualize the learnt model

Deep Inside Convolutional Networks This is a caffe implementation to visualize the learnt model. Part of a class project at Georgia Tech Problem State

Jigar 61 Apr 15, 2022