Scripts for measuring and displaying thermal behavior on Voron 3D printers

Overview

Thermal Profiling

Measuring gantry deflection and frame expansion

This script runs a series of defined homing and probing routines designed to characterize how the perceived Z height of the printer changes as the printer frame heats up. It does this by interfacing with the Moonraker API, so you will need to ensure you have Moonraker running.

First, download the script measure_thermal_behavior.py to your printer's Pi. My favorite way to do this is to ssh into the Pi and just clone this git repository:

git clone https://github.com/tanaes/measure_thermal_behavior.git

Edit script for your printer

You'll need to edit the script (please use a vanilla text editer, such as Nano, that doesn't fuck with line endings) to include parameters appropriate for your printer. Please also fill in the META DATA section - this will help us find patterns across printer configurations!

######### META DATA #################
# For data collection organizational purposes
USER_ID = ''            # e.g. Discord handle
PRINTER_MODEL = ''      # e.g. 'voron_v2_350'
HOME_TYPE = ''          # e.g. 'nozzle_pin', 'microswitch_probe', etc.
PROBE_TYPE = ''         # e.g. 'klicky', 'omron', 'bltouch', etc.
X_RAILS = ''            # e.g. '1x_mgn12_front', '2x_mgn9'
BACKERS = ''            # e.g. 'steel_x_y', 'Ti_x-steel_y', 'mgn9_y'
NOTES = ''              # anything note-worthy about this particular run,
                        #     no "=" characters
#####################################

######### CONFIGURATION #############
BASE_URL = 'http://127.0.0.1'       # printer URL (e.g. http://192.168.1.15)
                                    # leave default if running locally
BED_TEMPERATURE = 105               # bed temperature for measurements
HE_TEMPERATURE = 100                # extruder temperature for measurements
MEASURE_INTERVAL = 1
N_SAMPLES = 3
HOT_DURATION = 3                    # time after bed temp reached to continue
                                    # measuring, in hours
COOL_DURATION = 0                   # hours to continue measuring after heaters
                                    # are disabled
SOAK_TIME = 5                       # minutes to wait for bed to heatsoak after reaching temp
MEASURE_GCODE = 'G28 Z'             # G-code called on repeated measurements, single line/macro only
QGL_CMD = "QUAD_GANTRY_LEVEL"       # command for QGL; e.g. "QUAD_GANTRY_LEVEL" or None if no QGL.
MESH_CMD = "BED_MESH_CALIBRATE"

# Full config section name of the frame temperature sensor
FRAME_SENSOR = "temperature_sensor frame"
# chamber thermistor config name. Change to match your own, or "" if none
# will also work with temperature_fan configs
CHAMBER_SENSOR = "temperature_sensor chamber"
# Extra temperature sensors to collect. Use same format as above but seperate
# quoted names with commas (if more than one).
EXTRA_SENSORS = {"frame1": "temperature_sensor frame1",
                 "z_switch": "temperature_sensor z_switch"}

#####################################

Note that if you want to calculate your printers frame expansion coefficient, you will need to include a frame temperature sensor definition.

If you haven't already, copy the modified measure_thermal_behavior.py to the Pi running Klipper/Moonraker.

Modify printer config

You may want to adjust a few elements of your printer configuration to give the most accurate results possible.

In particular, we have found that long/slow bed probing routines can influence results as the bed heats up the gantry extrusion over the course of the mesh probing! This often manifests as an apparent front-to-back slope in the mesh.

For our purposes, a quick probe is usually sufficient. Below are some suggested settings:

[probe]
##  Inductive Probe - If you use this section , please comment the [bltouch] section
##  This probe is not used for Z height, only Quad Gantry Leveling
##  In Z+ position
##  If your probe is NO instead of NC, add change pin to ^PA3
pin: ^PA3
x_offset: 0
y_offset: 18.0
z_offset: 8
speed: 10.0
lift_speed: 10.0
samples: 1
samples_result: median
sample_retract_dist: 1.5
samples_tolerance: 0.05
samples_tolerance_retries: 10


[bed_mesh]
speed: 500
horizontal_move_z: 10
mesh_min: 30,30
mesh_max: 320,320
probe_count: 7,7
mesh_pps: 2,2
relative_reference_index: 24
algorithm: bicubic
bicubic_tension: 0.2
move_check_distance: 3.0
split_delta_z: .010
fade_start: 1.0 
fade_end: 5.0

Adjust printer hardware

There are a couple hardware tips we've found that help to yield repeatable and accurate results.

Make sure nozzle is clean

If you are using a nozzle switch style endstop (as in stock Voron V1/V2), plastic boogers can ruin a profiling run. Make sure it is clean before the run!

Loosen bed screws

We have seen that over-constraint of the bed can severely impact mesh reliability at different temperatures. For optimal results, we suggest only having a single tight bed screw during profiling.

Run data collection

For accurate results, ensure the entire printer is at ambient temp. It can take a couple hours for the frame to cool down completely after a run!

Run the script with Python3:

python3 measure_thermal_behavior.py

You may want to run it using nohup so that closing your ssh connection doesn't kill the process:

nohup python3 measure_thermal_behavior.py > out.txt &

The script will run for about 3 hours. It will home, QGL, home again, then heat the bed up.

While the bed is heating, the toolhead will move up to 80% of maximum Z height. This is to reduce the influence of the bed heater on the X gantry extrusion as much as possible while the bed heats.

Once the bed is at temp, it will take the first mesh. Then it will collect z expansion data once per minute for the next two hours. Finally, it will do one more mesh and then cooldown.

Processing data

The script will write the data to the folder from which it is run.

You have two options to generate plots: run the plotting scripts on the Pi, or run them on your PC.

Running on the RPi

You'll need to install some additional libraries to run the plotting scripts on the Pi. First, use apt-get to install pip for python3 and libatlas, which is a requirement for Numpy:

sudo apt-get update
sudo apt-get install python3-pip
sudo apt-get install libatlas-base-dev

Then, you can use pip via python3 to install the plotting script dependencies using the requirements.txt file from this repository:

python3 -m pip install -r requirements.txt

Finally, to generate the plots, just call:

process_meshes.py thermal_quant_{}.json.

You can include as many json-formatted datafiles as you want as positional arguments.

Running on the PC

To run on your PC, download the thermal_quant_{}.json results file.

The rest is left as an exercise to the reader.

Owner
Jon Sanders
Jon Sanders
A Raspberry Pi Pico plant sensor hub coded in Micropython

plantsensor A Raspberry Pi Pico plant sensor hub coded in Micropython I used: 1x Raspberry Pi Pico - microcontroller 1x Waveshare Pico OLED 1.3 - scre

78 Sep 20, 2022
Hook and simulate global keyboard events on Windows and Linux.

keyboard Take full control of your keyboard with this small Python library. Hook global events, register hotkeys, simulate key presses and much more.

BoppreH 3.2k Dec 30, 2022
USB Rubber Ducky with the Rasberry Pi pico microcontroller

pico-ducky Install Install and have your USB Rubber Ducky working in less than 5 minutes. Download CircuitPython for the Raspberry Pi Pico. Plug the d

AnOnYmOus001100 3 Oct 08, 2022
Claussoft Personal Digital Assistant

Claussoft Personal Digital Assistant Install on Linux $ sudo apt update $ sudo apt install espeak ffmpeg libespeak1 portaudio19-dev $ pip install -r r

Christian Clauss 3 Dec 14, 2022
Minimal and clean dashboard to visualize some stats of Pi-Hole with an E-Ink display attached to your Raspberry Pi

Clean Dashboard for Pi-Hole Minimal and clean dashboard to visualize some stats of Pi-Hole with an E-Ink display attached to your Raspberry Pi.

Alessio Santoru 104 Dec 14, 2022
Home Assistant custom integration for e-distribución

e-Distribución is an energy distribution company that covers most of South Spain area. If you live in this area, you probably are able to register into their website to get some information about you

VMG 17 Sep 07, 2022
ROS2 nodes for Waveshare Alphabot2-Pi mobile robot.

ROS2 for Waveshare Alphabot2-Pi This repo contains ROS2 packages for the Waveshare Alphabot2-Pi mobile robot: alphabot2: it contains the nodes used to

Michele Rizzo 2 Oct 11, 2022
ESP32 micropython implementation of Art-Net client

E_uArtnet ESP32 micropython implementation of Art-Net client Instalation Use thonny Open the root folder in thonny and upload the Empire folder like i

2 Dec 07, 2021
GUI wrapper designed for convenient service work with TI CC1352/CC2538/CC2652 based Zigbee sticks or gateways. Packed into single executable file

ZigStar GW Multi tool is GUI wrapper firtsly designed for convenient service work with Zig Star LAN GW, but now supports any TI CC1352/CC2538/CC2652 b

133 Jan 01, 2023
This Home Assistant custom component adding support for controlling Midea dehumidifiers on local network.

This custom component for Home assistant adds support for Midea dehumidifier appliances via the local area network. homeassistant-midea-dehumidifier-l

Nenad Bogojevic 91 Dec 28, 2022
SALUS THERMOSTAT Custom component for Home-Assistant

Home-Assistant Custom Components Custom Components for Home-Assistant (http://www.home-assistant.io) Salus Thermostat Climate Component My device is R

21 Dec 18, 2022
A Home Assistant sensor that tells you what holiday is next

Next Holiday Sensor This sensor tells you what holiday is coming up next. You can use it to set holiday light colors or other scenes. The state of the

Nick Touran 20 Dec 04, 2022
Universal Xiaomi MIoT integration for Home Assistant

Xiaomi MIoT Raw 简体中文 | English MIoT 协议是小米智能家居从 2018 年起推行的智能设备通信协议规范,此后凡是可接入米家的设备均通过此协议进行通信。此插件按照 MIoT 协议规范与设备通信,实现对设备的状态读取及控制。

1.9k Jan 02, 2023
Интеграция Home Assistant с ЛК "Интер РАО"

ЕЛК ЖКХ «Интер РАО» для Home Assistant Предоставление информации о текущем состоянии ваших аккаунтов в ЕЛК ЖКХ. Введение @ TODO @ Установка Посредство

Alexander Ryazanov 27 Nov 05, 2022
Monitor Live USB Plug In & Plug Out Events

I/O - Live USB Monitoring Author: Jonathan Scott @jonathandata1 Date: 3/13/2021 CURRENT VERSION 1.0 This is just a simple bash script that calls a pyt

Jonathan Scott 17 Dec 03, 2022
A PYTHON Library for Controlling Motors using SOLO Motor Controllers with RASPBERRY PI, Linux, windows, and more!

A PYTHON Library for Controlling Motors using SOLO Motor Controllers with RASPBERRY PI, Linux, windows, and more!

SOLO Motor Controllers 3 Apr 29, 2022
Drobo Status is a python program that will connect to your Drobo and return JSON data regarding your Drobo

This is a simple python script that will run a docker container to pull data from Drobo. It will give information like (Name, serial, firmware, disk-total, disk-used, disk-free and individual disk st

Biofects 1 Jan 15, 2022
For use with an 8-bit parallel TFT touchscreen using micropython

ILI9341-parallel-TFT-driver-for-micropython For use with an 8-bit parallel TFT touchscreen using micropython. Many thanks to prenticedavid and his MCU

3 Aug 02, 2022
Transform a Raspberry Pi into a network diagnostic machine.

EtherView Last updated jan 30, 2022. Welcome to the EtherView project! This is a project to transform a RaspberryPi into a portable network diagnostic

1 Jan 30, 2022
Yet another automation project because a smart light is more than just on or off.

Automate home Yet another home automation project because a smart light is more than just on or off. Overview When talking about home automation there

Maja Massarini 62 Oct 10, 2022