PyTorch implementations of the paper: "Learning Independent Instance Maps for Crowd Localization"

Overview

IIM - Crowd Localization


This repo is the official implementation of paper: Learning Independent Instance Maps for Crowd Localization. The code is developed based on C3F. framework

Progress

  • Testing Code (2020.12.10)
  • Training Code
    • NWPU (2020.12.14)
    • JHU (2021.01.05)
    • UCF-QNRF (2020.12.30)
    • ShanghaiTech Part A/B (2020.12.29)
    • FDST (2020.12.30)
  • scale information for UCF-QNRF and ShanghaiTech Part A/B (2021.01.07)

Getting Started

Preparation

  • Prerequisites

    • Python 3.7
    • Pytorch 1.6: http://pytorch.org .
    • other libs in requirements.txt, run pip install -r requirements.txt.
  • Code

  • Datasets

    • Download NWPU-Crowd dataset from this link.

    • Unzip *zip files in turns and place images_part* into the same folder (Root/ProcessedData/NWPU/images).

    • Download the processing labels and val gt file from this link. Place them into Root/ProcessedData/NWPU/masks and Root/ProcessedData/NWPU, respectively.

    • If you want to reproduce the results on Shanghai Tech Part A/B , UCF-QNRF, and JHU datasets, you can follow the instructions in DATA.md to setup the datasets.

    • Finally, the folder tree is below:

   -- ProcessedData
   	|-- NWPU
   		|-- images
   		|   |-- 0001.jpg
   		|   |-- 0002.jpg
   		|   |-- ...
   		|   |-- 5109.jpg
   		|-- masks
   		|   |-- 0001.png
   		|   |-- 0002.png
   		|   |-- ...
   		|   |-- 3609.png
   		|-- train.txt
   		|-- val.txt
   		|-- test.txt
   		|-- val_gt_loc.txt
   -- PretrainedModels
     |-- hrnetv2_w48_imagenet_pretrained.pth
   -- IIM
     |-- datasets
     |-- misc
     |-- ...

Training

  • run python train.py.
  • run tensorboard --logdir=exp --port=6006.
  • The validtion records are shown as follows: val_curve
  • The sub images are the input image, GT, prediction map,localization result, and pixel-level threshold, respectively: val_curve

Tips: The training process takes ~50 hours on NWPU datasets with two TITAN RTX (48GB Memeory).

Testing and Submitting

  • Modify some key parameters in test.py:
    • netName.
    • model_path.
  • Run python test.py. Then the output file (*_*_test.txt) will be generated, which can be directly submitted to CrowdBenchmark

Visualization on the val set

  • Modify some key parameters in test.py:
    • test_list = 'val.txt'
    • netName.
    • model_path.
  • Run python test.py. Then the output file (*_*_val.txt) will be generated.
  • Modify some key parameters in vis4val.py:
    • pred_file.
  • Run python vis4val.py.

Performance

The results (F1, Pre., Rec. under the sigma_l) and pre-trained models on NWPU val set, UCF-QNRF, SHT A, SHT B, and FDST:

Method NWPU val UCF-QNRF SHT A
Paper: VGG+FPN [2,3] 77.0/80.2/74.1 68.8/78.2/61.5 72.5/72.6/72.5
This Repo's Reproduction: VGG+FPN [2,3] 77.1/82.5/72.3 67.8/75.7/61.5 71.6/75.9/67.8
Paper: HRNet [1] 80.2/84.1/76.6 72.0/79.3/65.9 73.9/79.8/68.7
This Repo's Reproduction: HRNet [1] 79.8/83.4/76.5 72.0/78.7/66.4 76.1/79.1/73.3
Method SHT B FDST JHU
Paper: VGG+FPN [2,3] 80.2/84.9/76.0 93.1/92.7/93.5 -
This Repo's Reproduction: VGG+FPN [2,3] 81.7/88.5/75.9 93.9/94.7/93.1 61.8/73.2/53.5
Paper: HRNet [1] 86.2/90.7/82.1 95.5/95.3/95.8 62.5/74.0/54.2
This Repo's Reproduction: HRNet [1] 86.0/91.5/81.0 95.7/96.9 /94.4 64.0/73.3/56.8

References

  1. Deep High-Resolution Representation Learning for Visual Recognition, T-PAMI, 2019.
  2. Very Deep Convolutional Networks for Large-scale Image Recognition, arXiv, 2014.
  3. Feature Pyramid Networks for Object Detection, CVPR, 2017.

About the leaderboard on the test set, please visit Crowd benchmark. Our submissions are the IIM(HRNet) and IIM (VGG16).

Video Demo

We test the pretrained HR Net model on the NWPU dataset in a real-world subway scene. Please visit bilibili or YouTube to watch the video demonstration. val_curve

Citation

If you find this project is useful for your research, please cite:

@article{gao2020learning,
  title={Learning Independent Instance Maps for Crowd Localization},
  author={Gao, Junyu and Han, Tao and Yuan, Yuan and Wang, Qi},
  journal={arXiv preprint arXiv:2012.04164},
  year={2020}
}

Our code borrows a lot from the C^3 Framework, and you may cite:

@article{gao2019c,
  title={C$^3$ Framework: An Open-source PyTorch Code for Crowd Counting},
  author={Gao, Junyu and Lin, Wei and Zhao, Bin and Wang, Dong and Gao, Chenyu and Wen, Jun},
  journal={arXiv preprint arXiv:1907.02724},
  year={2019}
}

If you use pre-trained models in this repo (HR Net, VGG, and FPN), please cite them.

Owner
tao han
tao han
Algorithmic trading with deep learning experiments

Deep-Trading Algorithmic trading with deep learning experiments. Now released part one - simple time series forecasting. I plan to implement more soph

Alex Honchar 1.4k Jan 02, 2023
Official repository for the paper "Going Beyond Linear Transformers with Recurrent Fast Weight Programmers"

Recurrent Fast Weight Programmers This is the official repository containing the code we used to produce the experimental results reported in the pape

IDSIA 36 Nov 15, 2022
SCAN: Learning to Classify Images without Labels, incl. SimCLR. [ECCV 2020]

Learning to Classify Images without Labels This repo contains the Pytorch implementation of our paper: SCAN: Learning to Classify Images without Label

Wouter Van Gansbeke 1.1k Dec 30, 2022
ELSED: Enhanced Line SEgment Drawing

ELSED: Enhanced Line SEgment Drawing This repository contains the source code of ELSED: Enhanced Line SEgment Drawing the fastest line segment detecto

Iago Suárez 125 Dec 31, 2022
Multi-Modal Fingerprint Presentation Attack Detection: Evaluation On A New Dataset

PADISI USC Dataset This repository analyzes the PADISI-Finger dataset introduced in Multi-Modal Fingerprint Presentation Attack Detection: Evaluation

USC ISI VISTA Computer Vision 6 Feb 06, 2022
This is a Tensorflow implementation of Learning to See in the Dark in CVPR 2018

Learning-to-See-in-the-Dark This is a Tensorflow implementation of Learning to See in the Dark in CVPR 2018, by Chen Chen, Qifeng Chen, Jia Xu, and Vl

5.3k Jan 01, 2023
Official code of "R2RNet: Low-light Image Enhancement via Real-low to Real-normal Network."

R2RNet Official code of "R2RNet: Low-light Image Enhancement via Real-low to Real-normal Network." Jiang Hai, Zhu Xuan, Ren Yang, Yutong Hao, Fengzhu

77 Dec 24, 2022
🧠 A PyTorch implementation of 'Deep CORAL: Correlation Alignment for Deep Domain Adaptation.', ECCV 2016

Deep CORAL A PyTorch implementation of 'Deep CORAL: Correlation Alignment for Deep Domain Adaptation. B Sun, K Saenko, ECCV 2016' Deep CORAL can learn

Andy Hsu 200 Dec 25, 2022
Super Resolution for images using deep learning.

Neural Enhance Example #1 — Old Station: view comparison in 24-bit HD, original photo CC-BY-SA @siv-athens. As seen on TV! What if you could increase

Alex J. Champandard 11.7k Dec 29, 2022
CS5242_2021 - Neural Networks and Deep Learning, NUS CS5242, 2021

CS5242_2021 Neural Networks and Deep Learning, NUS CS5242, 2021 Cloud Machine #1 : Google Colab (Free GPU) Follow this Notebook installation : https:/

Xavier Bresson 165 Oct 25, 2022
Video Representation Learning by Recognizing Temporal Transformations. In ECCV, 2020.

Video Representation Learning by Recognizing Temporal Transformations [Project Page] Simon Jenni, Givi Meishvili, and Paolo Favaro. In ECCV, 2020. Thi

Simon Jenni 46 Nov 14, 2022
Multi-agent reinforcement learning algorithm and environment

Multi-agent reinforcement learning algorithm and environment [en/cn] Pytorch implements multi-agent reinforcement learning algorithms including IQL, Q

万鲲鹏 7 Sep 20, 2022
A high-level Python library for Quantum Natural Language Processing

lambeq About lambeq is a toolkit for quantum natural language processing (QNLP). Documentation: https://cqcl.github.io/lambeq/ User support: lambeq-su

Cambridge Quantum 315 Jan 01, 2023
ICCV2021 Papers with Code

ICCV2021 Papers with Code

Amusi 1.4k Jan 02, 2023
Invert and perturb GAN images for test-time ensembling

GAN Ensembling Project Page | Paper | Bibtex Ensembling with Deep Generative Views. Lucy Chai, Jun-Yan Zhu, Eli Shechtman, Phillip Isola, Richard Zhan

Lucy Chai 93 Dec 08, 2022
Using VapourSynth with super resolution models and speeding them up with TensorRT.

VSGAN-tensorrt-docker Using image super resolution models with vapoursynth and speeding them up with TensorRT. Using NVIDIA/Torch-TensorRT combined wi

111 Jan 05, 2023
Differentiable Prompt Makes Pre-trained Language Models Better Few-shot Learners

DART Implementation for ICLR2022 paper Differentiable Prompt Makes Pre-trained Language Models Better Few-shot Learners. Environment

ZJUNLP 83 Dec 27, 2022
ECAENet (TensorFlow and Keras)

ECAENet: EfficientNet with Efficient Channel Attention for Plant Species Recognition (SCI:Q3) (Journal of Intelligent & Fuzzy Systems)

4 Dec 22, 2022
ImVoxelNet: Image to Voxels Projection for Monocular and Multi-View General-Purpose 3D Object Detection

ImVoxelNet: Image to Voxels Projection for Monocular and Multi-View General-Purpose 3D Object Detection This repository contains implementation of the

Visual Understanding Lab @ Samsung AI Center Moscow 190 Dec 30, 2022
Clockwork Convnets for Video Semantic Segmentation

Clockwork Convnets for Video Semantic Segmentation This is the reference implementation of arxiv:1608.03609: Clockwork Convnets for Video Semantic Seg

Evan Shelhamer 141 Nov 21, 2022