Clustering is a popular approach to detect patterns in unlabeled data

Overview

Visual Clustering

Clustering is a popular approach to detect patterns in unlabeled data. Existing clustering methods typically treat samples in a dataset as points in a metric space and compute distances to group together similar points. Visual Clustering a different way of clustering points in 2-dimensional space, inspired by how humans "visually" cluster data. The algorithm is based on trained neural networks that perform instance segmentation on plotted data.

For more details, see the accompanying paper: "Clustering Plotted Data by Image Segmentation", arXiv preprint, and please use the citation below.

@article{naous2021clustering,
  title={Clustering Plotted Data by Image Segmentation},
  author={Naous, Tarek and Sarkar, Srinjay and Abid, Abubakar and Zou, James},
  journal={arXiv preprint arXiv:2110.05187},
  year={2021}
}

Installation

pip install visual-clustering

Usage

The algorithm can be used the same way as the classical clustering algorithms in scikit-learn:
You first import the class VisualClustering and create an instance of it.

from visual_clustering import VisualClustering

model = VisualClustering(median_filter_size = 1, max_filter_size= 1)

The parameters median_filter_size and max_filter_size are set to 1 by default.
You can experiment with different values to see what works best for your dataset !

Let's create a simple synthetic dataset of blobs.

from sklearn import datasets

data = datasets.make_blobs(n_samples=50000, centers=6, random_state=23,center_box=(-30, 30))
plt.scatter(data[0][:, 0], data[0][:, 1], s=1, c='black')

blobs

To cluster the dataset, use the fit function of the model:

predictions = model.fit(data[0])

Visualizing the results

You can visualize the results using matplotlib as you would normally do with classical clustering algorithms:

import matplotlib.pyplot as plt
from itertools import cycle, islice
import numpy as np

colors = np.array(list(islice(cycle(["#000000", '#377eb8', '#ff7f00', '#4daf4a', '#f781bf', '#a65628', '#984ea3']), int(max(predictions) + 1))))
#Black color for outliers (if any)
colors = np.append(colors, ["#000000"])
plt.scatter(data[0][:, 0], data[0][:, 1], s=10, color=colors[predictions.astype('int8')])

clustered_blobs

Run this code inside a colab notebook:
https://colab.research.google.com/drive/1DcZXhKnUpz1GDoGaJmpS6VVNXVuaRmE5?usp=sharing

Dependencies

Make sure that you have the following libraries installed:

transformers 4.15.0
scipy 1.4.1
tensorflow 2.7.0
keras 2.7.0
numpy 1.19.5
cv2 4.1.2
skimage 0.18.3

Contact

Tarek Naous: Scholar | Github | Linkedin | Research Gate | Personal Wesbite | [email protected]

Owner
Tarek Naous
Tarek Naous
Object detection GUI based on PaddleDetection

PP-Tracking GUI界面测试版 本项目是基于飞桨开源的实时跟踪系统PP-Tracking开发的可视化界面 在PaddlePaddle中加入pyqt进行GUI页面研发,可使得整个训练过程可视化,并通过GUI界面进行调参,模型预测,视频输出等,通过多种类型的识别,简化整体预测流程。 GUI界面

杨毓栋 68 Jan 02, 2023
NExT-QA: Next Phase of Question-Answering to Explaining Temporal Actions (CVPR2021)

NExT-QA We reproduce some SOTA VideoQA methods to provide benchmark results for our NExT-QA dataset accepted to CVPR2021 (with 1 'Strong Accept' and 2

Junbin Xiao 50 Nov 24, 2022
Kaggle Feedback Prize - Evaluating Student Writing 15th solution

Kaggle Feedback Prize - Evaluating Student Writing 15th solution First of all, I would like to thank the excellent notebooks and discussions from http

Lingyuan Zhang 6 Mar 24, 2022
HistoKT: Cross Knowledge Transfer in Computational Pathology

HistoKT: Cross Knowledge Transfer in Computational Pathology Exciting News! HistoKT has been accepted to ICASSP 2022. HistoKT: Cross Knowledge Transfe

Mahdi S. Hosseini 5 Jan 05, 2023
CO-PILOT: COllaborative Planning and reInforcement Learning On sub-Task curriculum

CO-PILOT CO-PILOT: COllaborative Planning and reInforcement Learning On sub-Task curriculum, NeurIPS 2021, Shuang Ao, Tianyi Zhou, Guodong Long, Qingh

Shuang Ao 1 Feb 18, 2022
Interactive Image Generation via Generative Adversarial Networks

iGAN: Interactive Image Generation via Generative Adversarial Networks Project | Youtube | Paper Recent projects: [pix2pix]: Torch implementation for

Jun-Yan Zhu 3.9k Dec 23, 2022
PyTorch implementation of paper: AdaAttN: Revisit Attention Mechanism in Arbitrary Neural Style Transfer, ICCV 2021.

AdaAttN: Revisit Attention Mechanism in Arbitrary Neural Style Transfer [Paper] [PyTorch Implementation] [Paddle Implementation] Overview This reposit

148 Dec 30, 2022
Learning Multiresolution Matrix Factorization and its Wavelet Networks on Graphs

Project Learning Multiresolution Matrix Factorization and its Wavelet Networks on Graphs, https://arxiv.org/pdf/2111.01940.pdf. Authors Truong Son Hy

5 Jun 28, 2022
Official implementation of NeurIPS'21: Implicit SVD for Graph Representation Learning

isvd Official implementation of NeurIPS'21: Implicit SVD for Graph Representation Learning If you find this code useful, you may cite us as: @inprocee

Sami Abu-El-Haija 16 Jan 08, 2023
A tutorial on DataFrames.jl prepared for JuliaCon2021

JuliaCon2021 DataFrames.jl Tutorial This is a tutorial on DataFrames.jl prepared for JuliaCon2021. A video recording of the tutorial is available here

Bogumił Kamiński 106 Jan 09, 2023
GNN4Traffic - This is the repository for the collection of Graph Neural Network for Traffic Forecasting

GNN4Traffic - This is the repository for the collection of Graph Neural Network for Traffic Forecasting

564 Jan 02, 2023
The official implementation of Autoregressive Image Generation using Residual Quantization (CVPR '22)

Autoregressive Image Generation using Residual Quantization (CVPR 2022) The official implementation of "Autoregressive Image Generation using Residual

Kakao Brain 529 Dec 30, 2022
It's A ML based Web Site build with python and Django to find the breed of the dog

ML-Based-Dog-Breed-Identifier This is a Django Based Web Site To Identify the Breed of which your DOG belogs All You Need To Do is to Follow These Ste

Sanskar Dwivedi 2 Oct 12, 2022
Training PSPNet in Tensorflow. Reproduce the performance from the paper.

Training Reproduce of PSPNet. (Updated 2021/04/09. Authors of PSPNet have provided a Pytorch implementation for PSPNet and their new work with support

Li Xuhong 126 Jul 13, 2022
Content shared at DS-OX Meetup

Streamlit-Projects Streamlit projects available in this repo: An introduction to Streamlit presented at DS-OX (Feb 26, 2020) meetup Streamlit 101 - Ja

Arvindra 69 Dec 23, 2022
Unicorn can be used for performance analyses of highly configurable systems with causal reasoning

Unicorn can be used for performance analyses of highly configurable systems with causal reasoning. Users or developers can query Unicorn for a performance task.

AISys Lab 27 Jan 05, 2023
Apply AnimeGAN-v2 across frames of a video clip

title emoji colorFrom colorTo sdk app_file pinned AnimeGAN-v2 For Videos 🔥 blue red gradio app.py false AnimeGAN-v2 For Videos Apply AnimeGAN-v2 acro

Nathan Raw 36 Oct 18, 2022
NL-Augmenter 🦎 → 🐍 A Collaborative Repository of Natural Language Transformations

NL-Augmenter 🦎 → 🐍 The NL-Augmenter is a collaborative effort intended to add transformations of datasets dealing with natural language. Transformat

684 Jan 09, 2023
Source code for GNN-LSPE (Graph Neural Networks with Learnable Structural and Positional Representations)

Graph Neural Networks with Learnable Structural and Positional Representations Source code for the paper "Graph Neural Networks with Learnable Structu

Vijay Prakash Dwivedi 180 Dec 22, 2022
Implements an infinite sum of poisson-weighted convolutions

An infinite sum of Poisson-weighted convolutions Kyle Cranmer, Aug 2018 If viewing on GitHub, this looks better with nbviewer: click here Consider a v

Kyle Cranmer 26 Dec 07, 2022