A Python library for detecting patterns and anomalies in massive datasets using the Matrix Profile

Overview

PyPI version Build Status Downloads Downloads/Week License

matrixprofile-ts

matrixprofile-ts is a Python 2 and 3 library for evaluating time series data using the Matrix Profile algorithms developed by the Keogh and Mueen research groups at UC-Riverside and the University of New Mexico. Current implementations include MASS, STMP, STAMP, STAMPI, STOMP, SCRIMP++, and FLUSS.

Read the Target blog post here.

Further academic description can be found here.

The PyPi page for matrixprofile-ts is here

Contents

Installation

Major releases of matrixprofile-ts are available on the Python Package Index:

pip install matrixprofile-ts

Details about each release can be found here.

Quick start

>>> from matrixprofile import *
>>> import numpy as np
>>> a = np.array([0.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0])
>>> matrixProfile.stomp(a,4)
(array([0., 0., 0., 0., 0., 0., 0., 0., 0.]), array([4., 5., 6., 7., 0., 1., 2., 3., 0.]))

Note that SCRIMP++ is highly recommended for calculating the Matrix Profile due to its speed and anytime ability.

Examples

Jupyter notebooks containing various examples of how to use matrixprofile-ts can be found under docs/examples.

As a basic introduction, we can take a synthetic signal and use STOMP to calculate the corresponding Matrix Profile (this is the same synthetic signal as in the Golang Matrix Profile library). Code for this example can be found here

datamp

There are several items of note:

  • The Matrix Profile value jumps at each phase change. High Matrix Profile values are associated with "discords": time series behavior that hasn't been observed before.

  • Repeated patterns in the data (or "motifs") lead to low Matrix Profile values.

We can introduce an anomaly to the end of the time series and use STAMPI to detect it

datampanom

The Matrix Profile has spiked in value, highlighting the (potential) presence of a new behavior. Note that Matrix Profile anomaly detection capabilities will depend on the nature of the data, as well as the selected subquery length parameter. Like all good algorithms, it's important to try out different parameter values.

Algorithm Comparison

This section shows the matrix profile algorithms and the time it takes to compute them. It also discusses use cases on when to use one versus another. The timing comparison is based on the synthetic sample data set to show run time speed.

For a more comprehensive runtime comparison, please review the notebook docs/examples/Algorithm Comparison.ipynb.

All time comparisons were ran on a 4 core 2.8 ghz processor with 16 GB of memory. The operating system used was Ubuntu 18.04LTS 64 bit.

Algorithm Time to Complete Description
STAMP 310 ms ± 1.73 ms per loop (mean ± std. dev. of 7 runs, 1 loop each) STAMP is an anytime algorithm that lets you sample the data set to get an approximate solution. Our implementation provides you with the option to specify the sampling size in percent format.
STOMP 79.8 ms ± 473 µs per loop (mean ± std. dev. of 7 runs, 10 loops each) STOMP computes an exact solution in a very efficient manner. When you have a historic time series that you would like to examine, STOMP is typically the quickest at giving an exact solution.
SCRIMP++ 59 ms ± 278 µs per loop (mean ± std. dev. of 7 runs, 10 loops each) SCRIMP++ merges the concepts of STAMP and STOMP together to provide an anytime algorithm that enables "interactive analysis speed". Essentially, it provides an exact or approximate solution in a very timely manner. Our implementation allows you to specify the max number of seconds you are willing to wait for a solution to obtain an approximate solution. If you are wanting the exact solution, it is able to provide that as well. The original authors of this algorithm suggest that SCRIMP++ can be used in all use cases.

Matrix Profile in Other Languages

Contact

Citations

  1. Chin-Chia Michael Yeh, Yan Zhu, Liudmila Ulanova, Nurjahan Begum, Yifei Ding, Hoang Anh Dau, Diego Furtado Silva, Abdullah Mueen, Eamonn Keogh (2016). Matrix Profile I: All Pairs Similarity Joins for Time Series: A Unifying View that Includes Motifs, Discords and Shapelets. IEEE ICDM 2016

  2. Matrix Profile II: Exploiting a Novel Algorithm and GPUs to break the one Hundred Million Barrier for Time Series Motifs and Joins. Yan Zhu, Zachary Zimmerman, Nader Shakibay Senobari, Chin-Chia Michael Yeh, Gareth Funning, Abdullah Mueen, Philip Berisk and Eamonn Keogh (2016). EEE ICDM 2016

  3. Matrix Profile V: A Generic Technique to Incorporate Domain Knowledge into Motif Discovery. Hoang Anh Dau and Eamonn Keogh. KDD'17, Halifax, Canada.

  4. Matrix Profile XI: SCRIMP++: Time Series Motif Discovery at Interactive Speed. Yan Zhu, Chin-Chia Michael Yeh, Zachary Zimmerman, Kaveh Kamgar and Eamonn Keogh, ICDM 2018.

  5. Matrix Profile VIII: Domain Agnostic Online Semantic Segmentation at Superhuman Performance Levels. Shaghayegh Gharghabi, Yifei Ding, Chin-Chia Michael Yeh, Kaveh Kamgar, Liudmila Ulanova, and Eamonn Keogh. ICDM 2017.

Owner
Target
Target's official GitHub organization
Target
Decentralized deep learning in PyTorch. Built to train models on thousands of volunteers across the world.

Hivemind: decentralized deep learning in PyTorch Hivemind is a PyTorch library to train large neural networks across the Internet. Its intended usage

1.3k Jan 08, 2023
Machine-care - A simple python script to take care of simple maintenance tasks

Machine care An simple python script to take care of simple maintenance tasks fo

2 Jul 10, 2022
Python package for causal inference using Bayesian structural time-series models.

Python Causal Impact Causal inference using Bayesian structural time-series models. This package aims at defining a python equivalent of the R CausalI

Thomas Cassou 219 Dec 11, 2022
Temporal Alignment Prediction for Supervised Representation Learning and Few-Shot Sequence Classification

Temporal Alignment Prediction for Supervised Representation Learning and Few-Shot Sequence Classification Introduction. This package includes the pyth

5 Dec 06, 2022
A Python step-by-step primer for Machine Learning and Optimization

early-ML Presentation General Machine Learning tutorials A Python step-by-step primer for Machine Learning and Optimization This github repository gat

Dimitri Bettebghor 8 Dec 01, 2022
SIMD-accelerated bitwise hamming distance Python module for hexidecimal strings

hexhamming What does it do? This module performs a fast bitwise hamming distance of two hexadecimal strings. This looks like: DEADBEEF = 1101111010101

Michael Recachinas 12 Oct 14, 2022
Predico Disease Prediction system based on symptoms provided by patient- using Python-Django & Machine Learning

Predico Disease Prediction system based on symptoms provided by patient- using Python-Django & Machine Learning

Felix Daudi 1 Jan 06, 2022
A library to generate synthetic time series data by easy-to-use factors and generator

timeseries-generator This repository consists of a python packages that generates synthetic time series dataset in a generic way (under /timeseries_ge

Nike Inc. 87 Dec 20, 2022
Interactive Parallel Computing in Python

Interactive Parallel Computing with IPython ipyparallel is the new home of IPython.parallel. ipyparallel is a Python package and collection of CLI scr

IPython 2.3k Dec 30, 2022
pandas, scikit-learn, xgboost and seaborn integration

pandas, scikit-learn and xgboost integration.

299 Dec 30, 2022
A machine learning model for Covid case prediction

CovidcasePrediction A machine learning model for Covid case prediction Problem Statement Using regression algorithms we can able to track the active c

VijayAadhithya2019rit 1 Feb 02, 2022
Highly interpretable classifiers for scikit learn, producing easily understood decision rules instead of black box models

Highly interpretable, sklearn-compatible classifier based on decision rules This is a scikit-learn compatible wrapper for the Bayesian Rule List class

Tamas Madl 482 Nov 19, 2022
Visualize classified time series data with interactive Sankey plots in Google Earth Engine

sankee Visualize changes in classified time series data with interactive Sankey plots in Google Earth Engine Contents Description Installation Using P

Aaron Zuspan 76 Dec 15, 2022
A statistical library designed to fill the void in Python's time series analysis capabilities, including the equivalent of R's auto.arima function.

pmdarima Pmdarima (originally pyramid-arima, for the anagram of 'py' + 'arima') is a statistical library designed to fill the void in Python's time se

alkaline-ml 1.3k Jan 06, 2023
Crypto-trading - ML techiques are used to forecast short term returns in 14 popular cryptocurrencies

Crypto-trading - ML techiques are used to forecast short term returns in 14 popular cryptocurrencies. We have amassed a dataset of millions of rows of high-frequency market data dating back to 2018 w

Panagiotis (Panos) Mavritsakis 4 Sep 22, 2022
Kaggler is a Python package for lightweight online machine learning algorithms and utility functions for ETL and data analysis.

Kaggler is a Python package for lightweight online machine learning algorithms and utility functions for ETL and data analysis. It is distributed under the MIT License.

Jeong-Yoon Lee 720 Dec 25, 2022
ML Optimizers from scratch using JAX

Toy implementations of some popular ML optimizers using Python/JAX

Shreyansh Singh 38 Jul 29, 2022
A toolkit for making real world machine learning and data analysis applications in C++

dlib C++ library Dlib is a modern C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real worl

Davis E. King 11.6k Jan 02, 2023
Lightning ⚡️ fast forecasting with statistical and econometric models.

Nixtla Statistical ⚡️ Forecast Lightning fast forecasting with statistical and econometric models StatsForecast offers a collection of widely used uni

Nixtla 2.1k Dec 29, 2022
A basic Ray Tracer that exploits numpy arrays and functions to work fast.

Python-Fast-Raytracer A basic Ray Tracer that exploits numpy arrays and functions to work fast. The code is written keeping as much readability as pos

Rafael de la Fuente 393 Dec 27, 2022