PyTorch implementations of normalizing flow and its variants.

Overview

Normalizing Flows by PyTorch

Codacy Badge

PyTorch implementations of the networks for normalizing flows.

Models

Currently, following networks are implemented.

  • Planar flow
    • Rezende and Mohamed 2015, "Variational Inference with Normalizing Flows," [arXiv]
  • RealNVP
    • Dinh et al., 2016, "Density Estimation using Real NVP," [arXiv]
  • Glow
    • Kingma and Dhariwal 2018, "Glow: Generative Flow with Invertible 1x1 Convolutions," [arXiv] [code]
  • Flow++
    • Ho et al., 2019, "Flow++: Improving Flow-Based Generative Models with Variational Dequantization and Architecture Design," [arXiv] [code]
  • MAF
    • Papamakarios et al., 2017, “Masked Autoregressive Flow for Density Estimation,” [arXiv]
  • Residual Flow
    • Behrmann et al., 2018, "Residual Flows for Invertible Generative Modeling," [arXiv] [code]
  • FFJORD
    • Grathwohl et al., 2018, "FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative Models," [arXiv] [code]

Note: This repository is for easier understanding of the above networks. Therefore, you should use official source cods if provided.

Setup

Anaconda

By Anaconda, you can easily setup the environment using environment.yml.

$ conda env create -f environment.yml

Pip

If you use pip or other tools, see the dependencies in environment.yml

Run

This repo uses hydra to manage hyper parameters in training and evaluation. See configs folder to check the parameters for each network.

$ python main.py \
    network=[planar, realnvp, glow, flow++, maf, resflow, ffjord]\
    run.distrib=[circles, moons, normals, swiss, s_curve, mnist, cifar10]

Note: Currently, I tested the networks only for 2D density transformation. So, results for 3D densities (swiss and s_curve) and images (mnist and cifar10) could be what you expect.

Results

See results/README.md for more results.

Real NVP

Target Reproduced Training

Copyright

MIT License (c) 2020, Tatsuya Yatagawa

Owner
Tatsuya Yatagawa
Tatsuya Yatagawa
Training PyTorch models with differential privacy

Opacus is a library that enables training PyTorch models with differential privacy. It supports training with minimal code changes required on the cli

1.3k Dec 29, 2022
Code snippets created for the PyTorch discussion board

PyTorch misc Collection of code snippets I've written for the PyTorch discussion board. All scripts were testes using the PyTorch 1.0 preview and torc

461 Dec 26, 2022
Model summary in PyTorch similar to `model.summary()` in Keras

Keras style model.summary() in PyTorch Keras has a neat API to view the visualization of the model which is very helpful while debugging your network.

Shubham Chandel 3.7k Dec 29, 2022
Differentiable SDE solvers with GPU support and efficient sensitivity analysis.

PyTorch Implementation of Differentiable SDE Solvers This library provides stochastic differential equation (SDE) solvers with GPU support and efficie

Google Research 1.2k Jan 04, 2023
A PyTorch implementation of EfficientNet

EfficientNet PyTorch Quickstart Install with pip install efficientnet_pytorch and load a pretrained EfficientNet with: from efficientnet_pytorch impor

Luke Melas-Kyriazi 7.2k Jan 06, 2023
PyTorch extensions for fast R&D prototyping and Kaggle farming

Pytorch-toolbelt A pytorch-toolbelt is a Python library with a set of bells and whistles for PyTorch for fast R&D prototyping and Kaggle farming: What

Eugene Khvedchenya 1.3k Jan 05, 2023
GPU-accelerated PyTorch implementation of Zero-shot User Intent Detection via Capsule Neural Networks

GPU-accelerated PyTorch implementation of Zero-shot User Intent Detection via Capsule Neural Networks This repository implements a capsule model Inten

Joel Huang 15 Dec 24, 2022
PyTorch wrappers for using your model in audacity!

PyTorch wrappers for using your model in audacity!

130 Dec 14, 2022
Distiller is an open-source Python package for neural network compression research.

Wiki and tutorials | Documentation | Getting Started | Algorithms | Design | FAQ Distiller is an open-source Python package for neural network compres

Intel Labs 4.1k Dec 28, 2022
PyTorch Implementation of [1611.06440] Pruning Convolutional Neural Networks for Resource Efficient Inference

PyTorch implementation of [1611.06440 Pruning Convolutional Neural Networks for Resource Efficient Inference] This demonstrates pruning a VGG16 based

Jacob Gildenblat 836 Dec 26, 2022
The goal of this library is to generate more helpful exception messages for numpy/pytorch matrix algebra expressions.

Tensor Sensor See article Clarifying exceptions and visualizing tensor operations in deep learning code. One of the biggest challenges when writing co

Terence Parr 704 Dec 14, 2022
270 Dec 24, 2022
PyTorch implementations of normalizing flow and its variants.

PyTorch implementations of normalizing flow and its variants.

Tatsuya Yatagawa 55 Dec 01, 2022
PyTorch to TensorFlow Lite converter

PyTorch to TensorFlow Lite converter

Omer Ferhat Sarioglu 140 Dec 13, 2022
Official implementations of EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis.

EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis This repo contains the official implementations of EigenDamage: Structured Prunin

Chaoqi Wang 107 Apr 20, 2022
A few Windows specific scripts for PyTorch

It is a repo that contains scripts that makes using PyTorch on Windows easier. Easy Installation Update: Starting from 0.4.0, you can go to the offici

408 Dec 15, 2022
lookahead optimizer (Lookahead Optimizer: k steps forward, 1 step back) for pytorch

lookahead optimizer for pytorch PyTorch implement of Lookahead Optimizer: k steps forward, 1 step back Usage: base_opt = torch.optim.Adam(model.parame

Liam 318 Dec 09, 2022
PyTorch Lightning Optical Flow models, scripts, and pretrained weights.

PyTorch Lightning Optical Flow models, scripts, and pretrained weights.

Henrique Morimitsu 105 Dec 16, 2022
Implements pytorch code for the Accelerated SGD algorithm.

AccSGD This is the code associated with Accelerated SGD algorithm used in the paper On the insufficiency of existing momentum schemes for Stochastic O

205 Jan 02, 2023
A code copied from google-research which named motion-imitation was rewrited with PyTorch

motor-system Introduction A code copied from google-research which named motion-imitation was rewrited with PyTorch. More details can get from this pr

NewEra 6 Jan 08, 2022