Official implementation of the paper "Steganographer Detection via a Similarity Accumulation Graph Convolutional Network"

Overview

SAGCN - Official PyTorch Implementation

| Paper | Project Page

This is the official implementation of the paper "Steganographer detection via a similarity accumulation graph convolutional network". NOTE: We are refactoring this project to the best practice of engineering.

Abstract

Steganographer detection aims to identify guilty users who conceal secret information in a number of images for the purpose of covert communication in social networks. Existing steganographer detection methods focus on designing discriminative features but do not explore relationship between image features or effectively represent users based on features. In these methods, each image is recognized as an equivalent, and each user is regarded as the distribution of all images shared by the corresponding user. However, the nuances of guilty users and innocent users are difficult to recognize with this flattened method. In this paper, the steganographer detection task is formulated as a multiple-instance learning problem in which each user is considered to be a bag, and the shared images are multiple instances in the bag. Specifically, we propose a similarity accumulation graph convolutional network to represent each user as a complete weighted graph, in which each node corresponds to features extracted from an image and the weight of an edge is the similarity between each pair of images. The constructed unit in the network can take advantage of the relationships between instances so that common patterns of positive instances can be enhanced via similarity accumulations. Instead of operating on a fixed original graph, we propose a novel strategy for reconstructing and pooling graphs based on node features to iteratively operate multiple convolutions. This strategy can effectively address oversmoothing problems that render nodes indistinguishable although they share different instance-level labels. Compared with the state-of-the-art method and other representative graph-based models, the proposed framework demonstrates its effectiveness and reliability ability across image domains, even in the context of large-scale social media scenarios. Moreover, the experimental results also indicate that the proposed network can be generalized to other multiple-instance learning problems.

Roadmap

After many rounds of revision, the project code implementation is not elegant. Thus, in order to help the readers to reproduce the experimental results of this paper quickly, we will open-source our study following this roadmap:

  • refactor and open-source all the model files, training files, and test files of the proposed method for comparison experiments.
  • refactor and open-source the visualization experiments.
  • refactor and open-source the APIs for the real-world steganographer detection in an out-of-box fashion.

Quick Start

Dataset and Pre-processing

We use the MDNNSD model to extract a 320-D feature from each image and save the extracted features in different .mat files. You should check ./data/train and ./data/test to confirm you have the dataset ready before experiments. For example, cover.mat and suniward_01.mat should be placed in the ./data/train and ./data/test folders.

Then, we provide a dataset tool to distribute image features and construct innocent users and guilty users as described in the paper, for example:

python preprocess_dataset.py --target suniward_01_100 --guilty_file suniward_01 --is_train --is_test --is_reset --mixin_num 0

Train the proposed SAGCN

To obtain our designed model for detecting steganographers, we provide an entry file with flexible command-line options, arguments to train the proposed SAGCN on the desired dataset under various experiment settings, for example:

python main.py --epochs 80 --batch_size 100 --model_name SAGCN --folder_name suniward_01_100 --parameters_name=sagcn_suniward_01_100 --mode train --learning_rate 1e-2 --gpu 1
python main.py --epochs 80 --batch_size 100 --model_name SAGCN --folder_name suniward_01_100 --parameters_name=sagcn_suniward_01_100 --mode train --learning_rate 1e-2 --gpu 1

Test the proposed SAGCN

For reproducing the reported experimental results, you just need to pass command-line options of the corresponding experimental setting, such as:

python main.py --batch_size 100 --model_name SAGCN --parameters_name sagcn_suniward_01_100 --folder_name suniward_01_100 --mode test --gpu 1

Visualize

If you set summary to True during training, you can use tensorboard to visualize the training process.

tensorboard --logdir logs --host 0.0.0.0 --port 8088

Requirement

  • Hardware: GPUs Tesla V100-PCIE (our version)
  • Software:
    • h5py==2.7.1 (our version)
    • scipy==1.1.0 (our version)
    • tqdm==4.25.0 (our version)
    • numpy==1.14.3 (our version)
    • torch==0.4.1 (our version)

Contact

If you have any questions, please feel free to open an issue.

Contribution

We thank all the people who already contributed to this project:

  • Zhi ZHANG
  • Mingjie ZHENG
  • Shenghua ZHONG
  • Yan LIU

Citation Information

If you find the project useful, please cite:

@article{zhang2021steganographer,
  title={Steganographer detection via a similarity accumulation graph convolutional network},
  author={Zhang, Zhi and Zheng, Mingjie and Zhong, Sheng-hua and Liu, Yan},
  journal={Neural Networks},
  volume={136},
  pages={97--111},
  year={2021}
}
Owner
ZHANG Zhi
日知其所亡,月无忘其所能
ZHANG Zhi
Unofficial implementation of PatchCore anomaly detection

PatchCore anomaly detection Unofficial implementation of PatchCore(new SOTA) anomaly detection model Original Paper : Towards Total Recall in Industri

Changwoo Ha 268 Dec 22, 2022
Submodular Subset Selection for Active Domain Adaptation (ICCV 2021)

S3VAADA: Submodular Subset Selection for Virtual Adversarial Active Domain Adaptation ICCV 2021 Harsh Rangwani, Arihant Jain*, Sumukh K Aithal*, R. Ve

Video Analytics Lab -- IISc 13 Dec 28, 2022
Template repository to build PyTorch projects from source on any version of PyTorch/CUDA/cuDNN.

The Ultimate PyTorch Source-Build Template Translations: 한국어 TL;DR PyTorch built from source can be x4 faster than a naïve PyTorch install. This repos

Joonhyung Lee/이준형 651 Dec 12, 2022
People log into different sites every day to get information and browse through these sites one by one

HyperLink People log into different sites every day to get information and browse through these sites one by one. And they are exposed to advertisemen

0 Feb 17, 2022
(Personalized) Page-Rank computation using PyTorch

torch-ppr This package allows calculating page-rank and personalized page-rank via power iteration with PyTorch, which also supports calculation on GP

Max Berrendorf 69 Dec 03, 2022
Classify bird species based on their songs using SIamese Networks and 1D dilated convolutions.

The goal is to classify different birds species based on their songs/calls. Spectrograms have been extracted from the audio samples and used as features for classification.

Aditya Dutt 9 Dec 27, 2022
The trained model and denoising example for paper : Cardiopulmonary Auscultation Enhancement with a Two-Stage Noise Cancellation Approach

The trained model and denoising example for paper : Cardiopulmonary Auscultation Enhancement with a Two-Stage Noise Cancellation Approach

ycj_project 1 Jan 18, 2022
MIRACLE (Missing data Imputation Refinement And Causal LEarning)

MIRACLE (Missing data Imputation Refinement And Causal LEarning) Code Author: Trent Kyono This repository contains the code used for the "MIRACLE: Cau

van_der_Schaar \LAB 15 Dec 29, 2022
Unsupervised Learning of Video Representations using LSTMs

Unsupervised Learning of Video Representations using LSTMs Code for paper Unsupervised Learning of Video Representations using LSTMs by Nitish Srivast

Elman Mansimov 341 Dec 20, 2022
Official code of Team Yao at Multi-Modal-Fact-Verification-2022

Official code of Team Yao at Multi-Modal-Fact-Verification-2022 A Multi-Modal Fact Verification dataset released as part of the De-Factify workshop in

Wei-Yao Wang 11 Nov 15, 2022
DropNAS: Grouped Operation Dropout for Differentiable Architecture Search

DropNAS: Grouped Operation Dropout for Differentiable Architecture Search DropNAS, a grouped operation dropout method for one-level DARTS, with better

weijunhong 4 Aug 15, 2022
This repo contains source code and materials for the TEmporally COherent GAN SIGGRAPH project.

TecoGAN This repository contains source code and materials for the TecoGAN project, i.e. code for a TEmporally COherent GAN for video super-resolution

Nils Thuerey 5.2k Jan 02, 2023
Python scripts to detect faces in Python with the BlazeFace Tensorflow Lite models

Python scripts to detect faces using Python with the BlazeFace Tensorflow Lite models. Tested on Windows 10, Tensorflow 2.4.0 (Python 3.8).

Ibai Gorordo 46 Nov 17, 2022
NR-GAN: Noise Robust Generative Adversarial Networks

Lexicon Enhanced Chinese Sequence Labeling Using BERT Adapter Code and checkpoints for the ACL2021 paper "Lexicon Enhanced Chinese Sequence Labelling

Takuhiro Kaneko 59 Dec 11, 2022
QuanTaichi evaluation suite

QuanTaichi: A Compiler for Quantized Simulations (SIGGRAPH 2021) Yuanming Hu, Jiafeng Liu, Xuanda Yang, Mingkuan Xu, Ye Kuang, Weiwei Xu, Qiang Dai, W

Taichi Developers 120 Jan 04, 2023
Implementation for our ICCV2021 paper: Internal Video Inpainting by Implicit Long-range Propagation

Implicit Internal Video Inpainting Implementation for our ICCV2021 paper: Internal Video Inpainting by Implicit Long-range Propagation paper | project

202 Dec 30, 2022
Lunar is a neural network aimbot that uses real-time object detection accelerated with CUDA on Nvidia GPUs.

Lunar Lunar is a neural network aimbot that uses real-time object detection accelerated with CUDA on Nvidia GPUs. About Lunar can be modified to work

Zeyad Mansour 276 Jan 07, 2023
Implementing DropPath/StochasticDepth in PyTorch

%load_ext memory_profiler Implementing Stochastic Depth/Drop Path In PyTorch DropPath is available on glasses my computer vision library! Introduction

Francesco Saverio Zuppichini 13 Jan 05, 2023
Save-restricted-v-3 - Save restricted content Bot For telegram

Save restricted content Bot Contact: Telegram A stable telegram bot to get restr

DEVANSH 11 Dec 21, 2022
A best practice for tensorflow project template architecture.

A best practice for tensorflow project template architecture.

Mahmoud Gamal Salem 3.6k Dec 22, 2022