Code repository accompanying the paper "On Adversarial Robustness: A Neural Architecture Search perspective"

Overview

Python 3.6

On Adversarial Robustness: A Neural Architecture Search perspective

Preparation:

Clone the repository:

https://github.com/tdchaitanya/nas-robustness.git

prerequisites

  • Python 3.6
  • Pytorch 1.2.0
  • CUDA 10.1

For a hassle-free environment setup, use the environment.yml file included in the repository.

Pre-trained models:

For easy reproduction of the result shown in the paper, this repository is organized dataset-wise, and all the pre-trained models can be downloaded from here

CIFAR-10/100

All the commands in this section should be executed in the cifar directory.

Hand-crafted models on CIFAR-10

All the files corresponding to this dataset are included in cifar-10/100 directories. Download cifar weigths from the shared drive link and place them in nas-robustness/cifar-10/cifar10_models/state_dicts directory.

For running all the four attacks on Resnet-50 (shown in Table 1) run the following command.

python handcrafted.py --arch resnet50

Change the architecture parameter to run attacks on other models. Only resnet-18, resnet-50, densenet-121, densenet-169, vgg-16 are supported for now. For other models, you may have to train them from scratch before running these attacks.

Hand-crafted models on CIFAR-100

For training the models on CIFAR-100 we have used fastai library. Download cifar-100 weigths from the shared drive link and place them in nas-robustness/cifar/c100-weights directory.

Additionally, you'll also have to download the CIFAR-100 dataset from here and place it in the data directory (we'll not be using this anywhere, this is just needed to initialize the fastai model).

python handcrafted_c100.py --arch resnet50
DARTS

Download DARTS CIFAR-10/100 weights from the drive and place it nas-robustness/darts/pretrained

For running all the four attacks on DARTS run the following command:

python darts-nas.py

Add --cifar100 to run the experiments on cifar-100

P-DARTS

Download P-DARTS CIFAR-10/100 weights from the drive and place it nas-robustness/pdarts/pretrained

For running all the four attacks on P-DARTS run the following command:

python pdarts-nas.py

Add --cifar100 to run the experiments on CIFAR-100

NSGA-Net

Download NSGA-Net CIFAR-10/100 weights from the drive and place it nas-robustness/nsga_net/pretrained

For running all the four attacks on P-DARTS run the following command:

python nsganet-nas.py

Add --cifar100 to run the experiments on CIFAR-100

PC-DARTS

Download PC-DARTS CIFAR-10/100 weights from the drive and place it nas-robustness/pcdarts/pretrained

For running all the four attacks on PC-DARTS run the following command:

python pcdarts-nas.py

Add --cifar100 to run the experiments on CIFAR-100

ImageNet

All the commands in this section should be executed in ImageNet directory.

Hand-crafted models

All the files corresponding to this dataset are included in imagenet directory. We use the default pre-trained weights provided by PyTorch for all attacks.

For running all the four attacks on Resnet-50 run the following command:

python handcrafted.py --arch resnet50

For DARTS, P-DARTS, PC-DARTS follow the same instructions as mentioned above for CIFAR-10/100, just change the working directory to ImageNet

DenseNAS

Download DenseNAS ImageNet weights from the drive (these are same as the weights provided in thier official repo) and place it nas-robustness/densenas/pretrained

For running all the four attacks on DenseNAS-R3 run the following command:

python dense-nas.py --model DenseNAS-R3

Citation

@InProceedings{Devaguptapu_2021_ICCV,
    author    = {Devaguptapu, Chaitanya and Agarwal, Devansh and Mittal, Gaurav and Gopalani, Pulkit and Balasubramanian, Vineeth N},
    title     = {On Adversarial Robustness: A Neural Architecture Search Perspective},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops},
    month     = {October},
    year      = {2021},
    pages     = {152-161}
}

Acknowledgements

Some of the code and weights provided in this library are borrowed from the libraries mentioned below:

Owner
Chaitanya Devaguptapu
Masters by Research (M.Tech-RA), IIT Hyderabad
Chaitanya Devaguptapu
Official repository for Natural Image Matting via Guided Contextual Attention

GCA-Matting: Natural Image Matting via Guided Contextual Attention The source codes and models of Natural Image Matting via Guided Contextual Attentio

Li Yaoyi 349 Dec 26, 2022
EMNLP 2021 Findings' paper, SCICAP: Generating Captions for Scientific Figures

SCICAP: Scientific Figures Dataset This is the Github repo of the EMNLP 2021 Findings' paper, SCICAP: Generating Captions for Scientific Figures (Hsu

Edward 26 Nov 21, 2022
Lightweight Python library for adding real-time object tracking to any detector.

Norfair is a customizable lightweight Python library for real-time 2D object tracking. Using Norfair, you can add tracking capabilities to any detecto

Tryolabs 1.7k Jan 05, 2023
Official repository of DeMFI (arXiv.)

DeMFI This is the official repository of DeMFI (Deep Joint Deblurring and Multi-Frame Interpolation). [ArXiv_ver.] Coming Soon. Reference Jihyong Oh a

Jihyong Oh 56 Dec 14, 2022
Code for visualizing the loss landscape of neural nets

Visualizing the Loss Landscape of Neural Nets This repository contains the PyTorch code for the paper Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer

Tom Goldstein 2.2k Jan 09, 2023
Parris, the automated infrastructure setup tool for machine learning algorithms.

README Parris, the automated infrastructure setup tool for machine learning algorithms. What Is This Tool? Parris is a tool for automating the trainin

Joseph Greene 319 Aug 02, 2022
Python package for multiple object tracking research with focus on laboratory animals tracking.

motutils is a Python package for multiple object tracking research with focus on laboratory animals tracking. Features loads: MOTChallenge CSV, sleap

Matěj Šmíd 2 Sep 05, 2022
PyTorch implementation of UPFlow (unsupervised optical flow learning)

UPFlow: Upsampling Pyramid for Unsupervised Optical Flow Learning By Kunming Luo, Chuan Wang, Shuaicheng Liu, Haoqiang Fan, Jue Wang, Jian Sun Megvii

kunming luo 87 Dec 20, 2022
An investigation project for SISR.

SISR-Survey An investigation project for SISR. This repository is an official project of the paper "From Beginner to Master: A Survey for Deep Learnin

Juncheng Li 79 Oct 20, 2022
Activating More Pixels in Image Super-Resolution Transformer

HAT [Paper Link] Activating More Pixels in Image Super-Resolution Transformer Xiangyu Chen, Xintao Wang, Jiantao Zhou and Chao Dong BibTeX @article{ch

XyChen 270 Dec 27, 2022
The code of paper "Block Modeling-Guided Graph Convolutional Neural Networks".

Block Modeling-Guided Graph Convolutional Neural Networks This repository contains the demo code of the paper: Block Modeling-Guided Graph Convolution

22 Dec 08, 2022
PyTorch implementation of ''Background Activation Suppression for Weakly Supervised Object Localization''.

Background Activation Suppression for Weakly Supervised Object Localization PyTorch implementation of ''Background Activation Suppression for Weakly S

35 Jan 06, 2023
Tensorflow Implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE

SMU A Tensorflow Implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE arXiv https://arxiv.org/abs/211

Fuhang 5 Jan 18, 2022
ICCV2021: Code for 'Spatial Uncertainty-Aware Semi-Supervised Crowd Counting'

ICCV2021: Code for 'Spatial Uncertainty-Aware Semi-Supervised Crowd Counting'

Yanda Meng 14 May 13, 2022
ViDT: An Efficient and Effective Fully Transformer-based Object Detector

ViDT: An Efficient and Effective Fully Transformer-based Object Detector by Hwanjun Song1, Deqing Sun2, Sanghyuk Chun1, Varun Jampani2, Dongyoon Han1,

NAVER AI 262 Dec 27, 2022
code for Grapadora research paper experimentation

Road feature embedding selection method Code for research paper experimentation Abstract Traffic forecasting models rely on data that needs to be sens

Eric López Manibardo 0 May 26, 2022
[SDM 2022] Towards Similarity-Aware Time-Series Classification

SimTSC This is the PyTorch implementation of SDM2022 paper Towards Similarity-Aware Time-Series Classification. We propose Similarity-Aware Time-Serie

Daochen Zha 49 Dec 27, 2022
UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language

UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language This repository contains UA-GEC data and an accompanying Python lib

Grammarly 226 Dec 29, 2022
StableSims is an open-source project aimed at simulating MakerDAO's Dai stablecoin system

StableSims is an open-source project aimed at simulating MakerDAO's Dai stablecoin system, initially used for researching optimal incentive parameters for Liquidations 2.0.

Blockchain at Berkeley 52 Nov 21, 2022
Augmented CLIP - Training simple models to predict CLIP image embeddings from text embeddings, and vice versa.

Train aug_clip against laion400m-embeddings found here: https://laion.ai/laion-400-open-dataset/ - note that this used the base ViT-B/32 CLIP model. S

Peter Baylies 55 Sep 13, 2022