Code repository accompanying the paper "On Adversarial Robustness: A Neural Architecture Search perspective"

Overview

Python 3.6

On Adversarial Robustness: A Neural Architecture Search perspective

Preparation:

Clone the repository:

https://github.com/tdchaitanya/nas-robustness.git

prerequisites

  • Python 3.6
  • Pytorch 1.2.0
  • CUDA 10.1

For a hassle-free environment setup, use the environment.yml file included in the repository.

Pre-trained models:

For easy reproduction of the result shown in the paper, this repository is organized dataset-wise, and all the pre-trained models can be downloaded from here

CIFAR-10/100

All the commands in this section should be executed in the cifar directory.

Hand-crafted models on CIFAR-10

All the files corresponding to this dataset are included in cifar-10/100 directories. Download cifar weigths from the shared drive link and place them in nas-robustness/cifar-10/cifar10_models/state_dicts directory.

For running all the four attacks on Resnet-50 (shown in Table 1) run the following command.

python handcrafted.py --arch resnet50

Change the architecture parameter to run attacks on other models. Only resnet-18, resnet-50, densenet-121, densenet-169, vgg-16 are supported for now. For other models, you may have to train them from scratch before running these attacks.

Hand-crafted models on CIFAR-100

For training the models on CIFAR-100 we have used fastai library. Download cifar-100 weigths from the shared drive link and place them in nas-robustness/cifar/c100-weights directory.

Additionally, you'll also have to download the CIFAR-100 dataset from here and place it in the data directory (we'll not be using this anywhere, this is just needed to initialize the fastai model).

python handcrafted_c100.py --arch resnet50
DARTS

Download DARTS CIFAR-10/100 weights from the drive and place it nas-robustness/darts/pretrained

For running all the four attacks on DARTS run the following command:

python darts-nas.py

Add --cifar100 to run the experiments on cifar-100

P-DARTS

Download P-DARTS CIFAR-10/100 weights from the drive and place it nas-robustness/pdarts/pretrained

For running all the four attacks on P-DARTS run the following command:

python pdarts-nas.py

Add --cifar100 to run the experiments on CIFAR-100

NSGA-Net

Download NSGA-Net CIFAR-10/100 weights from the drive and place it nas-robustness/nsga_net/pretrained

For running all the four attacks on P-DARTS run the following command:

python nsganet-nas.py

Add --cifar100 to run the experiments on CIFAR-100

PC-DARTS

Download PC-DARTS CIFAR-10/100 weights from the drive and place it nas-robustness/pcdarts/pretrained

For running all the four attacks on PC-DARTS run the following command:

python pcdarts-nas.py

Add --cifar100 to run the experiments on CIFAR-100

ImageNet

All the commands in this section should be executed in ImageNet directory.

Hand-crafted models

All the files corresponding to this dataset are included in imagenet directory. We use the default pre-trained weights provided by PyTorch for all attacks.

For running all the four attacks on Resnet-50 run the following command:

python handcrafted.py --arch resnet50

For DARTS, P-DARTS, PC-DARTS follow the same instructions as mentioned above for CIFAR-10/100, just change the working directory to ImageNet

DenseNAS

Download DenseNAS ImageNet weights from the drive (these are same as the weights provided in thier official repo) and place it nas-robustness/densenas/pretrained

For running all the four attacks on DenseNAS-R3 run the following command:

python dense-nas.py --model DenseNAS-R3

Citation

@InProceedings{Devaguptapu_2021_ICCV,
    author    = {Devaguptapu, Chaitanya and Agarwal, Devansh and Mittal, Gaurav and Gopalani, Pulkit and Balasubramanian, Vineeth N},
    title     = {On Adversarial Robustness: A Neural Architecture Search Perspective},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops},
    month     = {October},
    year      = {2021},
    pages     = {152-161}
}

Acknowledgements

Some of the code and weights provided in this library are borrowed from the libraries mentioned below:

Owner
Chaitanya Devaguptapu
Masters by Research (M.Tech-RA), IIT Hyderabad
Chaitanya Devaguptapu
AugLiChem - The augmentation library for chemical systems.

AugLiChem Welcome to AugLiChem! The augmentation library for chemical systems. This package supports augmentation for both crystaline and molecular sy

BaratiLab 17 Jan 08, 2023
The UI as a mobile display for OP25

OP25 Mobile Control Head A 'remote' control head that interfaces with an OP25 instance. We take advantage of some data end-points left exposed for the

Sarah Rose Giddings 13 Dec 28, 2022
This repository contains a PyTorch implementation of "AD-NeRF: Audio Driven Neural Radiance Fields for Talking Head Synthesis".

AD-NeRF: Audio Driven Neural Radiance Fields for Talking Head Synthesis | Project Page | Paper | PyTorch implementation for the paper "AD-NeRF: Audio

551 Dec 29, 2022
Predict halo masses from simulations via graph neural networks

HaloGraphNet Predict halo masses from simulations via Graph Neural Networks. Given a dark matter halo and its galaxies, creates a graph with informati

Pablo Villanueva Domingo 20 Nov 15, 2022
Pytorch-Swin-Unet-V2 - a modified version of Swin Unet based on Swin Transfomer V2

Swin Unet V2 Swin Unet V2 is a modified version of Swin Unet arxiv based on Swin

Chenxu Peng 26 Dec 03, 2022
Autoregressive Predictive Coding: An unsupervised autoregressive model for speech representation learning

Autoregressive Predictive Coding This repository contains the official implementation (in PyTorch) of Autoregressive Predictive Coding (APC) proposed

iamyuanchung 173 Dec 18, 2022
Deep Networks with Recurrent Layer Aggregation

RLA-Net: Recurrent Layer Aggregation Recurrence along Depth: Deep Networks with Recurrent Layer Aggregation This is an implementation of RLA-Net (acce

Joy Fang 21 Aug 16, 2022
Junction Tree Variational Autoencoder for Molecular Graph Generation (ICML 2018)

Junction Tree Variational Autoencoder for Molecular Graph Generation Official implementation of our Junction Tree Variational Autoencoder https://arxi

Wengong Jin 418 Jan 07, 2023
Easy genetic ancestry predictions in Python

ezancestry Easily visualize your direct-to-consumer genetics next to 2500+ samples from the 1000 genomes project. Evaluate the performance of a custom

Kevin Arvai 38 Jan 02, 2023
Multi-Objective Loss Balancing for Physics-Informed Deep Learning

Multi-Objective Loss Balancing for Physics-Informed Deep Learning Code for ReLoBRaLo. Abstract Physics Informed Neural Networks (PINN) are algorithms

Rafael Bischof 16 Dec 12, 2022
a spacial-temporal pattern detection system for home automation

Argos a spacial-temporal pattern detection system for home automation. Based on OpenCV and Tensorflow, can run on raspberry pi and notify HomeAssistan

Angad Singh 133 Jan 05, 2023
Code for PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning

PackNet: https://arxiv.org/abs/1711.05769 Pretrained models are available here: https://uofi.box.com/s/zap2p03tnst9dfisad4u0sfupc0y1fxt Datasets in Py

Arun Mallya 216 Jan 05, 2023
This is the source code for the experiments related to the paper Unsupervised Audio Source Separation Using Differentiable Parametric Source Models

Unsupervised Audio Source Separation Using Differentiable Parametric Source Models This is the source code for the experiments related to the paper Un

30 Oct 19, 2022
RSC-Net: 3D Human Pose, Shape and Texture from Low-Resolution Images and Videos

RSC-Net: 3D Human Pose, Shape and Texture from Low-Resolution Images and Videos Implementation for "3D Human Pose, Shape and Texture from Low-Resoluti

XiangyuXu 42 Nov 10, 2022
A dead simple python wrapper for darknet that works with OpenCV 4.1, CUDA 10.1

What Dead simple python wrapper for Yolo V3 using AlexyAB's darknet fork. Works with CUDA 10.1 and OpenCV 4.1 or later (I use OpenCV master as of Jun

Pliable Pixels 6 Jan 12, 2022
Implementation of "Glancing Transformer for Non-Autoregressive Neural Machine Translation"

GLAT Implementation for the ACL2021 paper "Glancing Transformer for Non-Autoregressive Neural Machine Translation" Requirements Python = 3.7 Pytorch

117 Jan 09, 2023
Image Fusion Transformer

Image-Fusion-Transformer Platform Python 3.7 Pytorch =1.0 Training Dataset MS-COCO 2014 (T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ram

Vibashan VS 68 Dec 23, 2022
QRec: A Python Framework for quick implementation of recommender systems (TensorFlow Based)

Introduction QRec is a Python framework for recommender systems (Supported by Python 3.7.4 and Tensorflow 1.14+) in which a number of influential and

Yu 1.4k Dec 30, 2022
UPSNet: A Unified Panoptic Segmentation Network

UPSNet: A Unified Panoptic Segmentation Network Introduction UPSNet is initially described in a CVPR 2019 oral paper. Disclaimer This repository is te

Uber Research 622 Dec 26, 2022
Adversarial Color Enhancement: Generating Unrestricted Adversarial Images by Optimizing a Color Filter

ACE Please find the preliminary version published at BMVC 2020 in the folder BMVC_version, and its extended journal version in Journal_version. Datase

28 Dec 25, 2022