Codes for NAACL 2021 Paper "Unsupervised Multi-hop Question Answering by Question Generation"

Overview

Unsupervised-Multi-hop-QA

This repository contains code and models for the paper: Unsupervised Multi-hop Question Answering by Question Generation (NAACL 2021).

  • We propose MQA-QG, an unsupervised question answering framework that can generate human-like multi-hop training pairs from both homogeneous and heterogeneous data sources.

  • We find that we can train a competent multi-hop QA model with only generated data. The F1 gap between the unsupervised and fully-supervised models is less than 20 in both the HotpotQA and the HybridQA dataset.

  • Pretraining a multi-hop QA model with our generated data would greatly reduce the demand for human-annotated training data for multi-hop QA.

Introduction

The model first defines a set of basic operators to retrieve / generate relevant information from each input source or to aggregate different information, as follows.

Afterwards, we define six Reasoning Graphs. Each corresponds to one type of multihop question and is formulated as a computation graph built upon the operators. We generate multihop question-answer pairs by executing the reasoning graph.

Requirements

  • Python 3.7.3
  • torch 1.7.1
  • tqdm 4.49.0
  • transformers 4.3.3
  • stanza 1.1.1
  • nltk 3.5
  • dateparser 1.0.0
  • scikit-learn 0.23.2
  • fuzzywuzzy 0.18.0

Data Preparation

Make the following data directories:

mkdir -p ./Data
mkdir -p ./Data/HotpotQA
mkdir -p ./Data/HybridQA

a) HotpotQA

First, download the raw dataset of hotpotQA.

HOTPOT_HOME=./Data/HotpotQA
mkdir -p $HOTPOT_HOME/raw
mkdir -p $HOTPOT_HOME/dataset
cd $HOTPOT_HOME/raw
wget http://curtis.ml.cmu.edu/datasets/hotpot/hotpot_train_v1.1.json
wget http://curtis.ml.cmu.edu/datasets/hotpot/hotpot_dev_distractor_v1.json

Then, run the following code to preprocess the raw dataset.

python prep_data_hotpotQA.py \
  --train_dir $HOTPOT_HOME/raw/hotpot_train_v1.1.json \
  --dev_dir $HOTPOT_HOME/raw/hotpot_dev_distractor_v1.json \
  --output_dir $HOTPOT_HOME/dataset/

You would be able to get the following files in ./Data/HotpotQA/dataset/

train.src.json
train.qa.json
dev.src.json
dev.qa.json

b) HybridQA

Download all the tables and passages of HybridQA into your data folder.

HYBRID_HOME=./Data/HybridQA
cd HYBRID_HOME
git clone https://github.com/wenhuchen/WikiTables-WithLinks

The human annotated questions can be found here. Download train.json, dev.json, and dev_reference.json. Rename train.json as train.human.json; rename dev.json as dev.human.json, and put them into ./Data/HybridQA folder.

Operators

Here are the codes that test our key operators: QGwithAns and DescribeEnt.

a) QGwithAns

QGwithAns generate a single-hop question Q with answer A from the input text D. We implement this module based on the pretrained QG model from patil-suraj, a Google T5 model finetuned on the SQuAD 1.1 dataset.

You could test this module by running the following python codes:

from MQA_QG.Operators import T5_QG

test_passage = '''Jenson Alexander Lyons Button (born 19 January 1980) is a British racing driver and former Formula One driver. He won the 2009 Formula One World Championship, driving for Brawn GP.'''

nlp = T5_QG.pipeline("question-generation", model='valhalla/t5-base-qg-hl', qg_format="highlight")

print(nlp.qg_without_answer(test_passage))
print(nlp.qg_with_answer_text(test_passage, "19 January 1980"))

b) DescribeEnt

DescribeEnt generate a sentence S that describes the given entity E based on the information of the table T. We implement this using the GPT-TabGen model (Chen et al., 2020a). The model first uses template to flatten the table T into a document PT and then feed PT to the pre-trained GPT-2 model to generate the output sentence S. The framework is as follows.

We finetune the GPT2 model on the ToTTo dataset (Parikh et al., 2020), a large-scale dataset of controlled table-to-text generation. Our fine-tuned model can be downloaded here. After downloading the finetuned model, put it under the Pretrained_Models directory. Then you could test this module by running the following python codes:

from MQA_QG.Operators.Table_to_Text import get_GPT2_Predictor

predictor = get_GPT2_Predictor('./Pretrained_Models/table2text_GPT2_medium_ep9.pt', num_samples = 3)
flattened_table = '''The table title is Netherlands at the European Track Championships . The Medal is Bronze . The Championship is 2011 Apeldoorn . The Name is Kirsten Wild . The Event is Women's omnium . Start describing Kirsten Wild : '''
results = predictor.predict_output(flattened_table)
print(results)

Multi-hop Question Generation

After data preparation and testing operators, you could generate different types of multi-hop questions from (table, passage) in HybridQA or passages in HotpotQA. You simply need to configure your experimental setting in MQA_QG/config.py, as follows:

###### Global Settings
EXPERIMENT = 'HybridQA' # The experiment you want to run, choose 'HotpotQA' or 'HybridQA'
QG_DEVICE = 5  # gpu device to run the QG module
BERT_DEVICE = 3 # gpu device to run the BERT module
TABLE2TEXT_DEVICE = 3 # gpu devide to run the Table2Text module
QUESTION_TYPE = 'table2text' # the type of question you want to generate
# for hybridQA, the options are: 'table2text', 'text2table', 'text_only', 'table_only'
# for hotpotQA, the options are: 'text2text', 'comparison'
QUESTION_NUM = 3 # the number of questions to generate for each input

###### User-specified data directory
DATA_PATH = '../Data/HybridQA/WikiTables-WithLinks/' # root data directory, '../Data/HybridQA/WikiTables-WithLinks/' for HybridQA; '../Data/HotpotQA/dataset/train.src.txt' for HotpotQA
OUTPUT_PATH = '../Outputs/train_table_to_text.json' # the json file to store the generated questions
DATA_RANGE = [0, 20] # for debug use: the range of the dataset you considered (use [0, -1] to use the full dataset)
Table2Text_Model_Path = '../Pretrained_Models/table2text_GPT2_medium_ep9.pt' # the path to the pretrained Table2Text model

Key parameters:

  • EXPERIMENT: the dataset you want to generate questions from, choose 'HotpotQA' or 'HybridQA'.
  • QG_DEVICE, BERT_DEVICE, TABLE2TEXT_DEVICE: the gpu device to run the QG module, BERT module, and Table2Text module.
  • QUESTION_TYPE: the type of question you want to generate. There are 6 different types of questions you can generate. For hybridQA, the options are: 'table2text', 'text2table', 'text_only', 'table_only'. For hotpotQA, the options are: 'text2text', 'comparison'.
  • QUESTION_NUM: the number of questions to generate for each input.
  • DATA_PATH: root data directory, the defaults are: '../Data/HybridQA/WikiTables-WithLinks/' for HybridQA; '../Data/HotpotQA/dataset/train.src.txt' for HotpotQA.
  • OUTPUT_PATH: the json file to store the generated questions
  • Table2Text_Model_Path: the path to the pretrained Table2Text model.

After configuration, run the following python code to generate multi-hop questions.

cd MQA-QG
python run_multihop_generation

A sample of generated (question, answer) pair for HybridQA is:

{
  "table_id": "\"Weird_Al\"_Yankovic_0",
  "question": "In what film did the Dollmaker play the role of Batman?",
  "answer-text": "Batman vs. Robin",
  "answer-node": [
    [
      "Batman vs. Robin",
      [
        12,
        1
      ],
      "/wiki/Batman_vs._Robin",
      "table"
    ]
  ],
  "question_id": "6",
  "where": "table",
  "question_postag": "IN WDT NN VBD DT NN VB DT NN IN NNP ."
}

A sample of generated (question, answer) pair for HotpotQA is:

{
  "passage_id": "5a70f0c05542994082a3e404",
  "ques_ans": [
    {
      "question": "When did the name that is the nickname of Baz Ashmawy begin filming Culture Clash?",
      "answer": "September 2008"
    },
    {
      "question": "How did the book that is the nickname of Baz Ashmawy travel to film Culture Clash?",
      "answer": "travelled the world"
    },
    {
      "question": "What is the common name of the song that is the name of Bazil Ashmawy 's first television show?",
      "answer": "Baz Ashmawy"
    }
  ]
}

(Optional) You could then rank the generated questions by the PPL under the pretrained GPT-medium model, by running the following codes:

python run_ppl_ranking.py \
  --input_dir ../Outputs/train_text_to_table.json \
  --output_dir ../Outputs/PPL_rank_train_text_to_table.json

Unsupervised Multi-hop QA

a) HotpotQA

We use the SpanBERT (Joshi et al., 2020) as the QA model for HotpotQA.

Data Preparation

First, in the project root directory, run the following scripts to prepare the data.

# Prepare the human-labeled training set
python Multihop_QA/HotpotQA/prepare_qa_data.py \
  --src_path ./Data/HotpotQA/dataset/train.src.json \
  --qa_path ./Data/HotpotQA/dataset/train.qa.json \
  --output_path ./Multihop_QA/HotpotQA/data/train.human.json

# Prepare the human-labeled dev set
python Multihop_QA/HotpotQA/prepare_qa_data.py \
  --src_path ./Data/HotpotQA/dataset/dev.src.json \
  --qa_path ./Data/HotpotQA/dataset/dev.qa.json \
  --output_path ./Multihop_QA/HotpotQA/data/dev.human.json

# Prepare the generated training set 
# (the generated questions in the last multi-hop QG step, name it as `train.hotpot.generated.json`)
python Multihop_QA/HotpotQA/prepare_qa_data.py \
  --src_path ./Data/HotpotQA/dataset/train.src.json \
  --qa_path ./Data/HotpotQA/dataset/train.hotpot.generated.json \
  --output_path ./Multihop_QA/HotpotQA/data/train.generated.json

This will create three datasets in the ./Multihop_QA/HotpotQA/data/ directory:

  • train.human.json: the human-labeled HotpotQA training set (90442 samples).
  • dev.human.json: the human-labeled HotpotQA validation set (7405 samples).
  • train.generated.json: the QA pairs generated by our MQA-QG model.

You could skip this data preparation process by directly downloading the above three files here.

Model Training

In the ./Multihop_QA/HotpotQA/ folder, run bash train.sh to train the SpanBERT QA model. Here is an example configuration of train.sh:

#!/bin/bash
set -x

DATAHOME=./data
MODELHOME=./outputs/supervised

mkdir -p ${MODELHOME}

export CUDA_VISIBLE_DEVICES=2

python code/run_mrqa.py \
  --do_train \
  --do_eval \
  --model spanbert-large-cased \
  --train_file ${DATAHOME}/train.human.json \
  --dev_file ${DATAHOME}/dev.human.json \
  --train_batch_size 32 \
  --eval_batch_size 32 \
  --gradient_accumulation_steps 8 \
  --learning_rate 2e-5 \
  --num_train_epochs 4 \
  --max_seq_length 512 \
  --doc_stride 128 \
  --eval_per_epoch 10 \
  --output_dir ${MODELHOME} \

There are two typical settings:

  • Supervised QA Setting: train the SpanBERT model on the human-labeled training set (train.human.json) and then evaluate the performance on the human-labeled validation set (dev.human.json).

  • Unsupervised QA Setting: train the SpanBERT model on the generated training set (train.generated.json) and then evaluate the performance on the human-labeled validation set (dev.human.json).

Evaluation

In the ./Multihop_QA/HotpotQA/ folder, run bash evaluate.sh to train the SpanBERT QA model. Here is an example configuration of evaluate.sh:

set -x

DATAHOME=./data/dev.human.json
MODELHOME=./outputs/unsupervised

export CUDA_VISIBLE_DEVICES=4

python code/run_mrqa.py \
  --do_eval \
  --eval_test \
  --model spanbert-large-cased \
  --test_file ${DATAHOME} \
  --eval_batch_size 32 \
  --max_seq_length 512 \
  --doc_stride 128 \
  --output_dir ${MODELHOME}

After evaluation, two files will be outputed to the model path:

  • test_results.txt: reporting the EM and F1.
  • predictions.txt: saving the QA results.

b) HybridQA

We use the HYBRIDER (Chen et al., 2020b) as the QA model for HybridQA.

Data Preparation

First, in the project root directory, run the following scripts to prepare the data. Suppose the generated questions in the last multi-hop QG step are saved in train.generated.json and put it into ./Data/HybridQA/ folder.

# Prepare the human-labeled train set
python Multihop_QA/HybridQA/prepare_qa_data.py \
  --input_path ./Data/HybridQA/train.human.json \
  --data_split train \
  --output_path ./Multihop_QA/HybridQA/data/human

# Prepare the human-labeled dev set
python Multihop_QA/HybridQA/prepare_qa_data.py \
  --input_path ./Data/HybridQA/dev.human.json \
  --data_split dev \
  --output_path ./Multihop_QA/HybridQA/data/human

# Prepare the generated training set 
python Multihop_QA/HybridQA/prepare_qa_data.py \
  --input_path ./Data/HybridQA/train.generated.json \
  --data_split train \
  --output_path ./Multihop_QA/HybridQA/data/generated

This will create two folders in the ./Multihop_QA/HybridQA/data/ directory:

  • generated: the processed generated train set.
  • human: the processed human-labeled train and dev set.

You could skip this data preparation process by directly downloading the above two folders here.

Model Training

Note that training the HYBRIDER model requires transformer==2.6.0

In the ./Multihop_QA/HybridQA/ folder, run bash train.sh to train the HYBRIDER QA model. Here is an example configuration of train.sh:

python train_stage12.py \
    --do_lower_case \
    --do_train \
    --train_file ./data/human/stage1_train_data.json \
    --resource_dir ../../Data/HybridQA/WikiTables-WithLinks \
    --learning_rate 2e-6 \
    --option stage1 \
    --num_train_epochs 3.0 \
    --gpu_index 6 \
    --cache_dir ./tmp/

python train_stage12.py \
    --do_lower_case \
    --do_train \
    --train_file ./data/human/stage2_train_data.json \
    --resource_dir ../../Data/HybridQA/WikiTables-WithLinks \
    --learning_rate 5e-6 \
    --option stage2 \
    --num_train_epochs 3.0 \
    --gpu_index 6 \
    --cache_dir ./tmp/

python train_stage3.py \
    --do_train  \
    --do_lower_case \
    --train_file ./data/human/stage3_train_data.json \
    --resource_dir ../../Data/HybridQA/WikiTables-WithLinks \
    --per_gpu_train_batch_size 12 \
    --learning_rate 3e-5 \
    --num_train_epochs 4.0 \
    --max_seq_length 384 \
    --doc_stride 128 \
    --threads 8 \
    --gpu_index 6 \
    --cache_dir ./tmp/

There are two typical settings:

  • Supervised QA Setting: train the HYBRIDER model on the human-labeled training set. Set the train_file as ./data/human/stage1(2)(3)_train_data.json.

  • Unsupervised QA Setting: train the HYBRIDER model on the generated training set. Set the train_file as ./data/generated/stage1(2)(3)_train_data.json.

Evaluation

In the ./Multihop_QA/HybridQA/ folder, run bash evaluate.sh to evaluate the HYBRIDER QA model.

Reference

Please cite the paper in the following format if you use this dataset during your research.

@inproceedings{pan-etal-2021-MQA-QG,
  title={Unsupervised Multi-hop Question Answering by Question Generation},
  author={Liangming Pan, Wenhu Chen, Wenhan Xiong, Min-Yen Kan, William Yang Wang},
  booktitle = {Annual Conference of the North American Chapter of the Association for Computational Linguistics (NAACL)},
  address = {Online},
  month = {June},
  year = {2021}
}

Q&A

If you encounter any problem, please either directly contact the first author or leave an issue in the github repo.

Owner
Liangming Pan
I am a third year Computer Science Ph.D. student at National University of Singapore.
Liangming Pan
Safe Control for Black-box Dynamical Systems via Neural Barrier Certificates

Safe Control for Black-box Dynamical Systems via Neural Barrier Certificates Installation Clone the repository: git clone https://github.com/Zengyi-Qi

Zengyi Qin 3 Oct 18, 2022
Official Pytorch Implementation of GraphiT

GraphiT: Encoding Graph Structure in Transformers This repository implements GraphiT, described in the following paper: Grégoire Mialon*, Dexiong Chen

Inria Thoth 80 Nov 27, 2022
Citation Intent Classification in scientific papers using the Scicite dataset an Pytorch

Citation Intent Classification Table of Contents About the Project Built With Installation Usage Acknowledgments About The Project Citation Intent Cla

Federico Nocentini 4 Mar 04, 2022
Incremental Transformer Structure Enhanced Image Inpainting with Masking Positional Encoding (CVPR2022)

Incremental Transformer Structure Enhanced Image Inpainting with Masking Positional Encoding by Qiaole Dong*, Chenjie Cao*, Yanwei Fu Paper and Supple

Qiaole Dong 190 Dec 27, 2022
Educational API for 3D Vision using pose to control carton.

Educational API for 3D Vision using pose to control carton.

41 Jul 10, 2022
Implementation of Gans

GAN Generative Adverserial Networks are an approach to generative data modelling using Deep learning methods. I have currently implemented : DCGAN on

Sibam Parida 5 Sep 07, 2021
Repository of Vision Transformer with Deformable Attention

Vision Transformer with Deformable Attention This repository contains the code for the paper Vision Transformer with Deformable Attention [arXiv]. Int

410 Jan 03, 2023
Code repo for "RBSRICNN: Raw Burst Super-Resolution through Iterative Convolutional Neural Network" (Machine Learning and the Physical Sciences workshop in NeurIPS 2021).

RBSRICNN: Raw Burst Super-Resolution through Iterative Convolutional Neural Network An official PyTorch implementation of the RBSRICNN network as desc

Rao Muhammad Umer 6 Nov 14, 2022
Learning from Synthetic Humans, CVPR 2017

Learning from Synthetic Humans (SURREAL) Gül Varol, Javier Romero, Xavier Martin, Naureen Mahmood, Michael J. Black, Ivan Laptev and Cordelia Schmid,

Gul Varol 538 Dec 18, 2022
PyTorch implementation of Glow

glow-pytorch PyTorch implementation of Glow, Generative Flow with Invertible 1x1 Convolutions (https://arxiv.org/abs/1807.03039) Usage: python train.p

Kim Seonghyeon 433 Dec 27, 2022
Trash Sorter Extraordinaire is a software which efficiently detects the different types of waste in a pile of random trash through feeding it pictures or videos.

Trash-Sorter-Extraordinaire Trash Sorter Extraordinaire is a software which efficiently detects the different types of waste in a pile of random trash

Rameen Mahmood 1 Nov 07, 2021
Contrastive Learning of Image Representations with Cross-Video Cycle-Consistency

Contrastive Learning of Image Representations with Cross-Video Cycle-Consistency This is a official implementation of the CycleContrast introduced in

13 Nov 14, 2022
EdMIPS: Rethinking Differentiable Search for Mixed-Precision Neural Networks

EdMIPS is an efficient algorithm to search the optimal mixed-precision neural network directly without proxy task on ImageNet given computation budgets. It can be applied to many popular network arch

Zhaowei Cai 47 Dec 30, 2022
The official implementation of You Only Compress Once: Towards Effective and Elastic BERT Compression via Exploit-Explore Stochastic Nature Gradient.

You Only Compress Once: Towards Effective and Elastic BERT Compression via Exploit-Explore Stochastic Nature Gradient (paper) @misc{zhang2021compress,

46 Dec 07, 2022
Making Structure-from-Motion (COLMAP) more robust to symmetries and duplicated structures

SfM disambiguation with COLMAP About Structure-from-Motion generally fails when the scene exhibits symmetries and duplicated structures. In this repos

Computer Vision and Geometry Lab 193 Dec 26, 2022
PyTorch implementation of "Learn to Dance with AIST++: Music Conditioned 3D Dance Generation."

Learn to Dance with AIST++: Music Conditioned 3D Dance Generation. Installation pip install -r requirements.txt Prepare Dataset bash data/scripts/pre

Zj Li 8 Sep 07, 2021
Learning Facial Representations from the Cycle-consistency of Face (ICCV 2021)

Learning Facial Representations from the Cycle-consistency of Face (ICCV 2021) This repository contains the code for our ICCV2021 paper by Jia-Ren Cha

Jia-Ren Chang 40 Dec 27, 2022
Code & Data for Enhancing Photorealism Enhancement

Code & Data for Enhancing Photorealism Enhancement

Intel ISL (Intel Intelligent Systems Lab) 1.1k Jan 08, 2023
Improving adversarial robustness by a coupling rejection strategy

Adversarial Training with Rectified Rejection The code for the paper Adversarial Training with Rectified Rejection. Environment settings and libraries

Tianyu Pang 29 Jan 06, 2023
Offical implementation for "Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation".

Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation (NeurIPS 2021) by Qiming Hu, Xiaojie Guo. Dependencies P

Qiming Hu 31 Dec 20, 2022