Code for the paper: "On the Bottleneck of Graph Neural Networks and Its Practical Implications"

Overview

On the Bottleneck of Graph Neural Networks and its Practical Implications

This is the official implementation of the paper: On the Bottleneck of Graph Neural Networks and its Practical Implications (ICLR'2021).

By Uri Alon and Eran Yahav. See also the [video], [poster] and [slides].

this repository is divided into three sub-projects:

  1. The subdirectory tf-gnn-samples is a clone of https://github.com/microsoft/tf-gnn-samples by Brockschmidt (ICML'2020). This project can be used to reproduce the QM9 and VarMisuse experiments of Section 4.2 and 4.2 in the paper. This sub-project depends on TensorFlow 1.13. The instructions for our clone are the same as their original code, except that reproducing our experiments (the QM9 dataset and VarMisuse) can be done by running the script tf-gnn-samples/run_qm9_benchs_fa.py or tf-gnn-samples/run_varmisuse_benchs_fa.py instead of their original scripts. For additional dependencies and instructions, see their original README: https://github.com/microsoft/tf-gnn-samples/blob/master/README.md. The main modification that we performed is using a Fully-Adjacent layer as the last GNN layer and we describe in our paper.
  2. The subdirectory gnn-comparison is a clone of https://github.com/diningphil/gnn-comparison by Errica et al. (ICLR'2020). This project can be used to reproduce the biological experiments (Section 4.3, the ENZYMES and NCI1 datasets). This sub-project depends on PyTorch 1.4 and Pytorch-Geometric. For additional dependencies and instructions, see their original README: https://github.com/diningphil/gnn-comparison/blob/master/README.md. The instructions for our clone are the same, except that we added an additional flag to every config_*.yml file, called last_layer_fa, which is set to True by default, and reproduces our experiments. The main modification that we performed is using a Fully-Adjacent layer as the last GNN layer.
  3. The main directory (in which this file resides) can be used to reproduce the experiments of Section 4.1 in the paper, for the "Tree-NeighborsMatch" problem. The rest of this README file includes the instructions for this main directory. This repository can be used to reproduce the experiments of

This project was designed to be useful in experimenting with new GNN architectures and new solutions for the over-squashing problem.

Feel free to open an issue with any questions.

The Tree-NeighborsMatch problem

alt text

Requirements

Dependencies

This project is based on PyTorch 1.4.0 and the PyTorch Geometric library.

pip install -r requirements.txt

The requirements.txt file lists the additional requirements. However, PyTorch Geometric might requires manual installation, and we thus recommend to use the requirements.txt file only afterward.

Verify that importing the dependencies goes without errors:

python -c 'import torch; import torch_geometric'

Hardware

Training on large trees (depth=8) might require ~60GB of RAM and about 10GB of GPU memory. GPU memory can be compromised by using a smaller batch size and using the --accum_grad flag.

For example, instead of running:

python main.py --batch_size 1024 --type GGNN

The following uses gradient accumulation, and takes less GPU memory:

python main.py --batch_size 512 --accum_grad 2 --type GGNN

Reproducing Experiments

To run a single experiment from the paper, run:

python main.py --help

And see the available flags. For example, to train a GGNN with depth=4, run:

python main.py --task DICTIONARY --eval_every 1000 --depth 4 --num_layers 5 --batch_size 1024 --type GGNN

To train a GNN across all depths, run one of the following:

python run-gcn-2-8.py
python run-gat-2-8.py
python run-ggnn-2-8.py
python run-gin-2-8.py

Results

The results of running the above scripts are (Section 4.1 in the paper):

alt text

r: 2 3 4 5 6 7 8
GGNN 1.0 1.0 1.0 0.60 0.38 0.21 0.16
GAT 1.0 1.0 1.0 0.41 0.21 0.15 0.11
GIN 1.0 1.0 0.77 0.29 0.20
GCN 1.0 1.0 0.70 0.19 0.14 0.09 0.08

Experiment with other GNN types

To experiment with other GNN types:

  • Add the new GNN type to the GNN_TYPE enum here, for example: MY_NEW_TYPE = auto()
  • Add another elif self is GNN_TYPE.MY_NEW_TYPE: to instantiate the new GNN type object here
  • Use the new type as a flag for the main.py file:
python main.py --type MY_NEW_TYPE ...

Citation

If you want to cite this work, please use this bibtex entry:

@inproceedings{
    alon2021on,
    title={On the Bottleneck of Graph Neural Networks and its Practical Implications},
    author={Uri Alon and Eran Yahav},
    booktitle={International Conference on Learning Representations},
    year={2021},
    url={https://openreview.net/forum?id=i80OPhOCVH2}
}
Physics-informed Neural Operator for Learning Partial Differential Equation

PINO Physics-informed Neural Operator for Learning Partial Differential Equation Abstract: Machine learning methods have recently shown promise in sol

107 Jan 02, 2023
GarmentNets: Category-Level Pose Estimation for Garments via Canonical Space Shape Completion

GarmentNets This repository contains the source code for the paper GarmentNets: Category-Level Pose Estimation for Garments via Canonical Space Shape

Columbia Artificial Intelligence and Robotics Lab 43 Nov 21, 2022
The Environment I built to study Reinforcement Learning + Pokemon Showdown

pokemon-showdown-rl-environment The Environment I built to study Reinforcement Learning + Pokemon Showdown Been a while since I ran this. Think it is

3 Jan 16, 2022
Github project for Attention-guided Temporal Coherent Video Object Matting.

Attention-guided Temporal Coherent Video Object Matting This is the Github project for our paper Attention-guided Temporal Coherent Video Object Matti

71 Dec 19, 2022
Consecutive-Subsequence - Simple software to calculate susequence with highest sum

Simple software to calculate susequence with highest sum This repository contain

Gbadamosi Farouk 1 Jan 31, 2022
Graph Self-Attention Network for Learning Spatial-Temporal Interaction Representation in Autonomous Driving

GSAN Introduction Code for paper GSAN: Graph Self-Attention Network for Learning Spatial-Temporal Interaction Representation in Autonomous Driving, wh

YE Luyao 6 Oct 27, 2022
Adversarial Learning for Modeling Human Motion

Adversarial Learning for Modeling Human Motion This repository contains the open source code which reproduces the results for the paper: Adversarial l

wangqi 6 Jun 15, 2021
PyTorch inference for "Progressive Growing of GANs" with CelebA snapshot

Progressive Growing of GANs inference in PyTorch with CelebA training snapshot Description This is an inference sample written in PyTorch of the origi

320 Nov 21, 2022
Public repo for the ICCV2021-CVAMD paper "Is it Time to Replace CNNs with Transformers for Medical Images?"

Is it Time to Replace CNNs with Transformers for Medical Images? Accepted at ICCV-2021: Workshop on Computer Vision for Automated Medical Diagnosis (C

Christos Matsoukas 80 Dec 27, 2022
PyTorch implementation of Lip to Speech Synthesis with Visual Context Attentional GAN (NeurIPS2021)

Lip to Speech Synthesis with Visual Context Attentional GAN This repository contains the PyTorch implementation of the following paper: Lip to Speech

6 Nov 02, 2022
Implementation of the Remixer Block from the Remixer paper, in Pytorch

Remixer - Pytorch Implementation of the Remixer Block from the Remixer paper, in Pytorch. It claims that substituting the feedforwards in transformers

Phil Wang 35 Aug 23, 2022
StyleGAN2 - Official TensorFlow Implementation

StyleGAN2 - Official TensorFlow Implementation

NVIDIA Research Projects 10.1k Dec 28, 2022
A check for whether the dependency jobs are all green.

alls-green A check for whether the dependency jobs are all green. Why? Do you have more than one job in your GitHub Actions CI/CD workflows setup? Do

Re:actors 33 Jan 03, 2023
A way to store images in YAML.

YAMLImg A way to store images in YAML. I made this after seeing Roadcrosser's JSON-G because it was too inspiring to ignore this opportunity. Installa

5 Mar 14, 2022
Official code for the CVPR 2022 (oral) paper "Extracting Triangular 3D Models, Materials, and Lighting From Images".

nvdiffrec Joint optimization of topology, materials and lighting from multi-view image observations as described in the paper Extracting Triangular 3D

NVIDIA Research Projects 1.4k Jan 01, 2023
Mask2Former: Masked-attention Mask Transformer for Universal Image Segmentation in TensorFlow 2

Mask2Former: Masked-attention Mask Transformer for Universal Image Segmentation in TensorFlow 2 Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexan

Phan Nguyen 1 Dec 16, 2021
Real-time pose estimation accelerated with NVIDIA TensorRT

trt_pose Want to detect hand poses? Check out the new trt_pose_hand project for real-time hand pose and gesture recognition! trt_pose is aimed at enab

NVIDIA AI IOT 803 Jan 06, 2023
Tools for robust generative diffeomorphic slice to volume reconstruction

RGDSVR Tools for Robust Generative Diffeomorphic Slice to Volume Reconstructions (RGDSVR) This repository provides tools to implement the methods in t

Lucilio Cordero-Grande 0 Oct 29, 2021
Jarvis Project is a basic virtual assistant that uses TensorFlow for learning.

Jarvis_proyect Jarvis Project is a basic virtual assistant that uses TensorFlow for learning. Latest version 0.1 Features: Good morning protocol Tell

Anze Kovac 3 Aug 31, 2022
Scrutinizing XAI with linear ground-truth data

This repository contains all the experiments presented in the corresponding paper: "Scrutinizing XAI using linear ground-truth data with suppressor va

braindata lab 2 Oct 04, 2022