Tensor-Based Quantum Machine Learning

Overview
https://codecov.io/gh/tensorly/quantum/branch/main/graph/badge.svg?token=5P8GZ8YLO7

TensorLy_Quantum

TensorLy-Quantum is a Python library for Tensor-Based Quantum Machine Learning that builds on top of TensorLy and PyTorch.

With TensorLy-Quantum, you can easily:

  • Create large quantum circuit: Tensor network formalism requires up to exponentially less memory for quantum simulation than traditional vector and matrix approaches.
  • Leverage tensor methods: the state vectors are efficiently represented in factorized form as Tensor-Rings (MPS) and the operators as TT-Matrices (MPO)
  • Efficient simulation: tensorly-quantum leverages the factorized structure to efficiently perform quantum simulation without ever forming the full, dense operators and state-vectors
  • Multi-Basis Encoding: we provide multi-basis encoding out-of-the-box for scalable experimentation
  • Solve hard problems: we provide all the tools to solve the MaxCut problem for an unprecendented number of qubits / vertices

Installing TensorLy-Quantum

Through pip

pip install tensorly-quantum

From source

git clone https://github.com/tensorly/quantum
cd quantum
pip install -e .
Comments
  • Rz has no gradient issue resolved

    Rz has no gradient issue resolved

    Hey there, The way RotZ was implemented it didn't have any gradient. I fixed the issue by using the same template as for the RotY and RotX. I think the tl.tensor() in the original version somehow blocked the backprop. The way it is written now the gradient is correct.

    opened by PatrickHuembeli 3
  • calculate_cut in the VQE example?

    calculate_cut in the VQE example?

    Hello! I have been trying to use your code to compute the MaxCut in the VQE jupyter notebook provided in the example sections. I tried to apply the calculate_cut function on the state as tlq.calculate_cut(state, qubits1, qubits2, weights) but I am having the following error TypeError: only integer tensors of a single element can be converted to an index.

    I see that the cut is calculated differently in the MBE example, but I would like to know if there is an analogue way of doing it with the VQE. Or should I just adapt my Hamiltonian to maximize the cut? Any help is appreciated, Thanks!

    opened by marionsilv 2
  • How to use cuQuantum as a backend

    How to use cuQuantum as a backend

    Hi,

    Thank you for your great work! May I know how to use cuQuantum as a backend as mentioned in your paper? Could you please provide a code example? How does the cuQuantum backend support autograd? Thank you very much!

    opened by nadbp 1
  • CNOT gate issue

    CNOT gate issue

    Hello,

    I have been trying to build a circuit with a CNOT gate acting on non-contiguous qubits (e.g., qubit 1 and 4), but I am finding strange results.

    For example, if I choose an initial state [1,0,0,0]

    and apply the unitary uni = tlq.Unitary([tlq.CNOTL(device=device, dtype=dtype), tlq.CNOTR(device=device, dtype=dtype), tlq.IDENTITY(dtype=dtype, device=device), tlq.IDENTITY(dtype=dtype, device=device)], nqubits, ncontraq, device=device, dtype=dtype)

    I get (for the expected value of Sz): tensor([-1., -1., 1., 1.])

    However, if I apply the CNOT cores to non-adjacent qubits in the same initial state, with uni = tlq.Unitary([tlq.CNOTL(device=device, dtype=dtype), tlq.IDENTITY(dtype=dtype, device=device), tlq.IDENTITY(dtype=dtype, device=device), tlq.CNOTR(device=device, dtype=dtype)], nqubits, ncontraq, device=device, dtype=dtype)

    I find, again for the expected value of Sz: tensor([-2., 2., 2., 0.])

    Is there any limitation regarding the CNOT cores that make it only valid for adjacent qubits, or am I doing something wrong? I am attaching a file with the full code for running: code.txt

    Thanks for the help, Marion Silvestrini.

    opened by marionsilv 2
  • Hamiltonian unitary

    Hamiltonian unitary

    Hello all,

    I was wondering if there is a way in TensorLy Quantum to build a parametrised unitary based on a binary Hamiltonian, such as the Ising model given in the examples, for use in the circuits.

    I mean to use it in an application like a QAOA, for instance. Is there a way to adapt from the binary_hamiltonian function, or something like that?

    Thanks!

    opened by rafaeleb 10
Releases(0.1.0)
Owner
TensorLy
Tensor Learning in Python.
TensorLy
Time-Optimal Planning for Quadrotor Waypoint Flight

Time-Optimal Planning for Quadrotor Waypoint Flight This is an example implementation of the paper "Time-Optimal Planning for Quadrotor Waypoint Fligh

Robotics and Perception Group 38 Dec 02, 2022
RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation

RIFE - Real Time Video Interpolation arXiv | YouTube | Colab | Tutorial | Demo Table of Contents Introduction Collection Usage Evaluation Training and

hzwer 3k Jan 04, 2023
[arXiv'22] Panoptic NeRF: 3D-to-2D Label Transfer for Panoptic Urban Scene Segmentation

Panoptic NeRF Project Page | Paper | Dataset Panoptic NeRF: 3D-to-2D Label Transfer for Panoptic Urban Scene Segmentation Xiao Fu*, Shangzhan zhang*,

Xiao Fu 111 Dec 16, 2022
In this work, we will implement some basic but important algorithm of machine learning step by step.

WoRkS continued English 中文 Français Probability Density Estimation-Non-Parametric Methods(概率密度估计-非参数方法) 1. Kernel / k-Nearest Neighborhood Density Est

liziyu0104 1 Dec 30, 2021
Lightweight Face Image Quality Assessment

LightQNet This is a demo code of training and testing [LightQNet] using Tensorflow. Uncertainty Losses: IDQ loss PCNet loss Uncertainty Networks: Mobi

Kaen 5 Nov 18, 2022
Scalable, Portable and Distributed Gradient Boosting (GBDT, GBRT or GBM) Library, for Python, R, Java, Scala, C++ and more. Runs on single machine, Hadoop, Spark, Dask, Flink and DataFlow

eXtreme Gradient Boosting Community | Documentation | Resources | Contributors | Release Notes XGBoost is an optimized distributed gradient boosting l

Distributed (Deep) Machine Learning Community 23.6k Dec 31, 2022
Deep Learning and Logical Reasoning from Data and Knowledge

Logic Tensor Networks (LTN) Logic Tensor Network (LTN) is a neurosymbolic framework that supports querying, learning and reasoning with both rich data

171 Dec 29, 2022
Hydra: an Extensible Fuzzing Framework for Finding Semantic Bugs in File Systems

Hydra: An Extensible Fuzzing Framework for Finding Semantic Bugs in File Systems Paper Finding Semantic Bugs in File Systems with an Extensible Fuzzin

gts3.org (<a href=[email protected])"> 129 Dec 15, 2022
Provably Rare Gem Miner.

Provably Rare Gem Miner just another random project by yoyoismee.eth useful link main site market contract useful thing you should know read contract

34 Nov 22, 2022
Distributionally robust neural networks for group shifts

Distributionally Robust Neural Networks for Group Shifts: On the Importance of Regularization for Worst-Case Generalization This code implements the g

151 Dec 25, 2022
Implementation of CVPR'21: RfD-Net: Point Scene Understanding by Semantic Instance Reconstruction

RfD-Net [Project Page] [Paper] [Video] RfD-Net: Point Scene Understanding by Semantic Instance Reconstruction Yinyu Nie, Ji Hou, Xiaoguang Han, Matthi

Yinyu Nie 162 Jan 06, 2023
LBBA-boosted WSOD

LBBA-boosted WSOD Summary Our code is based on ruotianluo/pytorch-faster-rcnn and WSCDN Sincerely thanks for your resources. Newer version of our code

Martin Dong 20 Sep 19, 2022
Code for the TIP 2021 Paper "Salient Object Detection with Purificatory Mechanism and Structural Similarity Loss"

PurNet Project for the TIP 2021 Paper "Salient Object Detection with Purificatory Mechanism and Structural Similarity Loss" Abstract Image-based salie

Jinming Su 4 Aug 25, 2022
Pytorch implementation for "Adversarial Robustness under Long-Tailed Distribution" (CVPR 2021 Oral)

Adversarial Long-Tail This repository contains the PyTorch implementation of the paper: Adversarial Robustness under Long-Tailed Distribution, CVPR 20

Tong WU 89 Dec 15, 2022
This is an official implementation for "SimMIM: A Simple Framework for Masked Image Modeling".

Project This repo has been populated by an initial template to help get you started. Please make sure to update the content to build a great experienc

Microsoft 674 Dec 26, 2022
Picasso: a methods for embedding points in 2D in a way that respects distances while fitting a user-specified shape.

Picasso Code to generate Picasso embeddings of any input matrix. Picasso maps the points of an input matrix to user-defined, n-dimensional shape coord

Pachter Lab 45 Dec 23, 2022
本步态识别系统主要基于GaitSet模型进行实现

本步态识别系统主要基于GaitSet模型进行实现。在尝试部署本系统之前,建立理解GaitSet模型的网络结构、训练和推理方法。 系统的实现效果如视频所示: 演示视频 由于模型较大,部分模型文件存储在百度云盘。 链接提取码:33mb 具体部署过程 1.下载代码 2.安装requirements.txt

16 Oct 22, 2022
Keras-1D-ACGAN-Data-Augmentation

Keras-1D-ACGAN-Data-Augmentation What is the ACGAN(Auxiliary Classifier GANs) ? Related Paper : [Abstract : Synthesizing high resolution photorealisti

Jae-Hoon Shim 7 Dec 23, 2022
[CVPR'2020] DeepDeform: Learning Non-rigid RGB-D Reconstruction with Semi-supervised Data

DeepDeform (CVPR'2020) DeepDeform is an RGB-D video dataset containing over 390,000 RGB-D frames in 400 videos, with 5,533 optical and scene flow imag

Aljaz Bozic 165 Jan 09, 2023
Repository for the electrical and ICT benchmark model developed in the ERIGrid 2.0 project.

Benchmark Model Electrical and ICT System This repository contains the documentation, code, and models for the electrical and ICT benchmark model deve

ERIGrid 2.0 1 Nov 29, 2021