PyArmadillo: an alternative approach to linear algebra in Python

Overview

PyArmadillo

PyArmadillo: an alternative approach to linear algebra in Python

PyArmadillo is a linear algebra library for the Python language, with an emphasis on ease of use. It aims to provide a high-level syntax and functionality deliberately similar to Matlab/Octave, allowing mathematical operations to be expressed in a familiar and natural manner. PyArmadillo provides objects for matrices and cubes, as well as over 200 associated functions for manipulating data stored in the objects. All functions are accessible in one flat structure. Integer, floating point and complex numbers are supported. Various matrix factorisations are provided through integration with LAPACK, or one of its high performance drop-in replacements such as Intel MKL or OpenBLAS.

While frameworks such as NumPy and SciPy are available for Python, they tend to be unnecessarily verbose and cumbersome to use from a linear algebra point of view. These frameworks require users to handle data types that are not immediately intuitive, have a structure that complicates the use of common functions, and use syntax that considerably differs from Matlab.

This library is co-led by Jason Rumengan, me and Conrad Sanderson.

You might also like...
QR2Pass-project - A proof of concept for an alternative (passwordless) authentication system to a web server

QR2Pass This is a proof of concept for an alternative (passwordless) authenticat

Plover-tapey-tape: an alternative to Plover’s built-in paper tape

plover-tapey-tape plover-tapey-tape is an alternative to Plover’s built-in paper

A commany has recently introduced a new type of bidding, the average bidding, as an alternative to the bid given to the current maximum bidding
A commany has recently introduced a new type of bidding, the average bidding, as an alternative to the bid given to the current maximum bidding

Business Problem A commany has recently introduced a new type of bidding, the average bidding, as an alternative to the bid given to the current maxim

High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.
High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.

What is xLearn? xLearn is a high performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machin

High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.
High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.

What is xLearn? xLearn is a high performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machin

A python library to build Model Trees with Linear Models at the leaves.
A python library to build Model Trees with Linear Models at the leaves.

A python library to build Model Trees with Linear Models at the leaves.

Creating a Linear Program Solver by Implementing the Simplex Method in Python with NumPy
Creating a Linear Program Solver by Implementing the Simplex Method in Python with NumPy

Creating a Linear Program Solver by Implementing the Simplex Method in Python with NumPy Simplex Algorithm is a popular algorithm for linear programmi

Machine Learning From Scratch. Bare bones NumPy implementations of machine learning models and algorithms with a focus on accessibility. Aims to cover everything from linear regression to deep learning.
Machine Learning From Scratch. Bare bones NumPy implementations of machine learning models and algorithms with a focus on accessibility. Aims to cover everything from linear regression to deep learning.

Machine Learning From Scratch About Python implementations of some of the fundamental Machine Learning models and algorithms from scratch. The purpose

Comments
  • may you do me a favor. i wanna transfer matlab function to python in pyarma

    may you do me a favor. i wanna transfer matlab function to python in pyarma

    matlab function ` function output =NN_F(input)

    layer_nodes_num=[200,200,150,150]; bias=0.00001; %input=traindata(:,1); pre_layer_nodes_num=length(input); pre_layer_nodes_value=input'; % input for l=1:length(layer_nodes_num) > curr_layer_nodes_num=layer_nodes_num(l);

    clear curr_layer_nodes_value;
    for it=1:curr_layer_nodes_num
        curr_node_input_weight=randn(1,pre_layer_nodes_num);
        xx=sum(pre_layer_nodes_value.*curr_node_input_weight);
        curr_layer_nodes_value(it)=tanh(xx/2.5);
    end
    pre_layer_nodes_value=curr_layer_nodes_value;
    pre_layer_nodes_num=curr_layer_nodes_num;
    

    end output=curr_layer_nodes_value; end `

    opened by luyifanlu 6
  • Need thoughts on v0.500.0!

    Need thoughts on v0.500.0!

    Hi community,

    Thanks for the support! ~~v0.500.0 is in preparation.~~

    ~~Feel free to give out some thoughts on PyArmadillo v0.400.0 after having a play!~~

    We are happy to announce v0.500.0 is released! 🥳 🥳 🥳

    You are more than welcome to use our library in your own projects and other work :D

    opened by terryyz 6
Releases(v0.500.0)
  • v0.500.0(Feb 10, 2021)

    v0.500.0 Updates:

    • instances of mat and cube are initialised to contain zero-valued elements by default
    • added standalone zeros(), ones(), randu(), randn(), eye()
    • added pyarma_rng.set_seed(value) and pyarma_rng.set_seed_random()
    • added extra forms for lu(), qr(), qr_econ(), qz(), svd_econ()
    • added subscripting for size objects
    • range() renamed to spread() to prevent conflicts with built-in range() in Python
    • for solve(), solve_opts_* flags renamed to solve_opts.* (eg. solve_opts_fast is now solve_opts.fast)
    • for mat and cube constructors, fill_* flags renamed to fill.* (eg. fill_zeros is now fill.zeros)

    Download

    For downloading the packages, please visit here

    Source code(tar.gz)
    Source code(zip)
  • v0.490.0(Feb 8, 2021)

  • v0.400.0(Feb 3, 2021)

    Installation Notes

    • See the README file in the .tar.xz package for full installation instructions

    • Installation requirements:

      • at least Python 3.6; the minimum recommended version is Python 3.8
      • a C++ compiler that supports at least the C++11 standard
      • at least 8 GB of RAM
      • 64-bit CPU, preferably with 4+ cores
      • OpenBLAS and LAPACK
    • If you encounter any bugs or regressions, please report them

    • If you use PyArmadillo in your research and/or software, please cite the associated papers; citations are useful for the continued development and maintenance of the library

    • Linux based operating systems (eg. Fedora, Ubuntu, CentOS, Red Hat, Debian, etc)

      • Before installing PyArmadillo, first install OpenBLAS, LAPACK, Python 3, and pip3, along with the corresponding development/header files

      • On CentOS 8 / RHEL 8, the CentOS PowerTools repository may first need to be enabled: dnf config-manager --set-enabled powertools

      • Recommended packages to install before installing PyArmadillo: Fedora, CentOS, RHEL: gcc-c++, libstdc++-devel, openblas-devel, lapack-devel, python3-devel, python3-pip Ubuntu and Debian: g++, libopenblas-dev, liblapack-dev, python3-dev, python3-pip

    • macOS

      • Before installing PyArmadillo, install Xcode (version 8 or later) and then type the following command in a terminal window: xcode-select --install

      • Xcode command-line tools include the Python 3 development files, but pip3 needs to be updated: pip3 install --user --upgrade pip

      • The "Accelerate" framework is used for accessing BLAS and LAPACK functions; see the README file in the package for more information

    • Windows (x64)

      • Before installing Pyarmadillo, fist install Microsoft Visual Studio (2019 or later) and use the x64 Native Tools Command Prompt

      • The PyArmadillo package contains pre-compiled OpenBLAS 0.3.10, which is used for accessing BLAS and LAPACK functions

      • Alternative implementations and/or distributions of BLAS and LAPACK are available at:

        • http://software.intel.com/en-us/intel-mkl/
        • http://icl.cs.utk.edu/lapack-for-windows/lapack/
        • http://ylzhao.blogspot.com.au/2013/10/blas-lapack-precompiled-binaries-for.html
      • Caveat: 32-bit Windows (x86) is currently not supported

      • Caveat: for any high performance scientific/engineering workloads, we strongly recommend using a Linux based operating system.

    Source code(tar.gz)
    Source code(zip)
    pyarmadillo-0.400.0.tar.xz(6.56 MB)
Owner
Terry Zhuo
Undergraduate @UNSWComputing; RA @MonashNLP
Terry Zhuo
[ICLR'19] Trellis Networks for Sequence Modeling

TrellisNet for Sequence Modeling This repository contains the experiments done in paper Trellis Networks for Sequence Modeling by Shaojie Bai, J. Zico

CMU Locus Lab 460 Oct 13, 2022
Using deep actor-critic model to learn best strategies in pair trading

Deep-Reinforcement-Learning-in-Stock-Trading Using deep actor-critic model to learn best strategies in pair trading Abstract Partially observed Markov

281 Dec 09, 2022
code for paper "Does Unsupervised Architecture Representation Learning Help Neural Architecture Search?"

Does Unsupervised Architecture Representation Learning Help Neural Architecture Search? Code for paper: Does Unsupervised Architecture Representation

39 Dec 17, 2022
My published benchmark for a Kaggle Simulations Competition

Lux AI Working Title Bot Please refer to the Kaggle notebook for the comment section. The comment section contains my explanation on my code structure

Tong Hui Kang 29 Aug 22, 2022
Implementation of Bidirectional Recurrent Independent Mechanisms (Learning to Combine Top-Down and Bottom-Up Signals in Recurrent Neural Networks with Attention over Modules)

BRIMs Bidirectional Recurrent Independent Mechanisms Implementation of the paper Learning to Combine Top-Down and Bottom-Up Signals in Recurrent Neura

Sarthak Mittal 26 May 26, 2022
VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech

VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech Jaehyeon Kim, Jungil Kong, and Juhee Son In our rece

Jaehyeon Kim 1.7k Jan 08, 2023
CN24 is a complete semantic segmentation framework using fully convolutional networks

Build status: master (production branch): develop (development branch): Welcome to the CN24 GitHub repository! CN24 is a complete semantic segmentatio

Computer Vision Group Jena 123 Jul 14, 2022
BuildingNet: Learning to Label 3D Buildings

BuildingNet This is the implementation of the BuildingNet architecture described in this paper: Paper: BuildingNet: Learning to Label 3D Buildings Arx

16 Nov 07, 2022
Bootstrapped Unsupervised Sentence Representation Learning (ACL 2021)

Install first pip3 install -e . Training python3 training/unsupervised_tuning.py python3 training/supervised_tuning.py python3 training/multilingual_

yanzhang_nlp 26 Jul 22, 2022
Accelerating BERT Inference for Sequence Labeling via Early-Exit

Sequence-Labeling-Early-Exit Code for ACL 2021 paper: Accelerating BERT Inference for Sequence Labeling via Early-Exit Requirement: Please refer to re

李孝男 23 Oct 14, 2022
Towards the D-Optimal Online Experiment Design for Recommender Selection (KDD 2021)

Towards the D-Optimal Online Experiment Design for Recommender Selection (KDD 2021) Contact 0 Jan 11, 2022

This is just a funny project that we want to see AutoEncoder (AE) can actually work to enhance the features we want

Funny_muscle_enhancer :) 1.Discription: This is just a funny project that we want to see AutoEncoder (AE) can actually work on the some features. We w

Jing-Yao Chen (Jacob) 8 Oct 01, 2022
Official code for 'Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentationon Complex Urban Driving Scenes'

PEBAL This repo contains the Pytorch implementation of our paper: Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentationon Complex Urba

Yu Tian 115 Dec 29, 2022
[NIPS 2021] UOTA: Improving Self-supervised Learning with Automated Unsupervised Outlier Arbitration.

UOTA: Improving Self-supervised Learning with Automated Unsupervised Outlier Arbitration This repository is the official PyTorch implementation of UOT

6 Jun 29, 2022
CVPR2021 Content-Aware GAN Compression

Content-Aware GAN Compression [ArXiv] Paper accepted to CVPR2021. @inproceedings{liu2021content, title = {Content-Aware GAN Compression}, auth

52 Nov 06, 2022
RLDS stands for Reinforcement Learning Datasets

RLDS RLDS stands for Reinforcement Learning Datasets and it is an ecosystem of tools to store, retrieve and manipulate episodic data in the context of

Google Research 135 Jan 01, 2023
The codebase for Data-driven general-purpose voice activity detection.

Data driven GPVAD Repository for the work in TASLP 2021 Voice activity detection in the wild: A data-driven approach using teacher-student training. S

Heinrich Dinkel 75 Nov 27, 2022
A custom DeepStack model for detecting 16 human actions.

DeepStack_ActionNET This repository provides a custom DeepStack model that has been trained and can be used for creating a new object detection API fo

MOSES OLAFENWA 16 Nov 11, 2022
Python package for covariance matrices manipulation and Biosignal classification with application in Brain Computer interface

pyRiemann pyRiemann is a python package for covariance matrices manipulation and classification through Riemannian geometry. The primary target is cla

447 Jan 05, 2023
A keras-based real-time model for medical image segmentation (CFPNet-M)

CFPNet-M: A Light-Weight Encoder-Decoder Based Network for Multimodal Biomedical Image Real-Time Segmentation This repository contains the implementat

268 Nov 27, 2022