Sane and flexible OpenAPI 3 schema generation for Django REST framework.

Overview

drf-spectacular

build-status-image codecov pypi-version docs

Sane and flexible OpenAPI 3.0 schema generation for Django REST framework.

This project has 3 goals:
  1. Extract as much schema information from DRF as possible.
  2. Provide flexibility to make the schema usable in the real world (not only toy examples).
  3. Generate a schema that works well with the most popular client generators.

The code is a heavily modified fork of the DRF OpenAPI generator, which is/was lacking all of the below listed features.

Features
  • Serializers modelled as components. (arbitrary nesting and recursion supported)
  • @extend_schema decorator for customization of APIView, Viewsets, function-based views, and @action
    • additional parameters
    • request/response serializer override (with status codes)
    • polymorphic responses either manually with PolymorphicProxySerializer helper or via rest_polymorphic's PolymorphicSerializer)
    • ... and more customization options
  • Authentication support (DRF natives included, easily extendable)
  • Custom serializer class support (easily extendable)
  • SerializerMethodField() type via type hinting or @extend_schema_field
  • i18n support
  • Tags extraction
  • Request/response/parameter examples
  • Description extraction from docstrings
  • Sane fallbacks
  • Sane operation_id naming (based on path)
  • Schema serving with SpectacularAPIView (Redoc and Swagger-UI views are also available)
  • Optional input/output serializer component split
  • Included support for:

For more information visit the documentation.

License

Provided by T. Franzel, Cashlink Technologies GmbH. Licensed under 3-Clause BSD.

Requirements

  • Python >= 3.6
  • Django (2.2, 3.1, 3.2)
  • Django REST Framework (3.10, 3.11, 3.12)

Installation

Install using pip...

$ pip install drf-spectacular

then add drf-spectacular to installed apps in settings.py

INSTALLED_APPS = [
    # ALL YOUR APPS
    'drf_spectacular',
]

and finally register our spectacular AutoSchema with DRF.

REST_FRAMEWORK = {
    # YOUR SETTINGS
    'DEFAULT_SCHEMA_CLASS': 'drf_spectacular.openapi.AutoSchema',
}

drf-spectacular ships with sane default settings that should work reasonably well out of the box. It is not necessary to specify any settings, but we recommend to specify at least some metadata.

SPECTACULAR_SETTINGS = {
    'TITLE': 'Your Project API',
    'DESCRIPTION': 'Your project description',
    'VERSION': '1.0.0',
    # OTHER SETTINGS
}

Release management

drf-spectacular deliberately stays below version 1.x.x to signal that every new version may potentially break you. For production we strongly recommend pinning the version and inspecting a schema diff on update.

With that said, we aim to be extremely defensive w.r.t. breaking API changes. However, we also acknowledge the fact that even slight schema changes may break your toolchain, as any existing bug may somehow also be used as a feature.

We define version increments with the following semantics. y-stream increments may contain potentially breaking changes to both API and schema. z-stream increments will never break the API and may only contain schema changes that should have a low chance of breaking you.

Take it for a spin

Generate your schema with the CLI:

$ ./manage.py spectacular --file schema.yml
$ docker run -p 80:8080 -e SWAGGER_JSON=/schema.yml -v ${PWD}/schema.yml:/schema.yml swaggerapi/swagger-ui

If you also want to validate your schema add the --validate flag. Or serve your schema directly from your API. We also provide convenience wrappers for swagger-ui or redoc.

from drf_spectacular.views import SpectacularAPIView, SpectacularRedocView, SpectacularSwaggerView
urlpatterns = [
    # YOUR PATTERNS
    path('api/schema/', SpectacularAPIView.as_view(), name='schema'),
    # Optional UI:
    path('api/schema/swagger-ui/', SpectacularSwaggerView.as_view(url_name='schema'), name='swagger-ui'),
    path('api/schema/redoc/', SpectacularRedocView.as_view(url_name='schema'), name='redoc'),
]

Usage

drf-spectacular works pretty well out of the box. You might also want to set some metadata for your API. Just create a SPECTACULAR_SETTINGS dictionary in your settings.py and override the defaults. Have a look at the available settings.

The toy examples do not cover your cases? No problem, you can heavily customize how your schema will be rendered.

Customization by using @extend_schema

Most customization cases should be covered by the extend_schema decorator. We usually get pretty far with specifying OpenApiParameter and splitting request/response serializers, but the sky is the limit.

from drf_spectacular.utils import extend_schema, OpenApiParameter, OpenApiExample
from drf_spectacular.types import OpenApiTypes

class AlbumViewset(viewset.ModelViewset)
    serializer_class = AlbumSerializer

    @extend_schema(
        request=AlbumCreationSerializer
        responses={201: AlbumSerializer},
    )
    def create(self, request):
        # your non-standard behaviour
        return super().create(request)

    @extend_schema(
        # extra parameters added to the schema
        parameters=[
            OpenApiParameter(name='artist', description='Filter by artist', required=False, type=str),
            OpenApiParameter(
                name='release',
                type=OpenApiTypes.DATE,
                location=OpenApiParameter.QUERY,
                description='Filter by release date',
                examples=[
                    OpenApiExample(
                        'Example 1',
                        summary='short optional summary',
                        description='longer description',
                        value='1993-08-23'
                    ),
                    ...
                ],
            ),
        ],
        # override default docstring extraction
        description='More descriptive text',
        # provide Authentication class that deviates from the views default
        auth=None,
        # change the auto-generated operation name
        operation_id=None,
        # or even completely override what AutoSchema would generate. Provide raw Open API spec as Dict.
        operation=None,
        # attach request/response examples to the operation.
        examples=[
            OpenApiExample(
                'Example 1',
                description='longer description',
                value=...
            ),
            ...
        ],
    )
    def list(self, request):
        # your non-standard behaviour
        return super().list(request)

    @extend_schema(
        request=AlbumLikeSerializer
        responses={204: None},
        methods=["POST"]
    )
    @extend_schema(description='Override a specific method', methods=["GET"])
    @action(detail=True, methods=['post', 'get'])
    def set_password(self, request, pk=None):
        # your action behaviour

More customization

Still not satisifed? You want more! We still got you covered. Visit customization for more information.

Testing

Install testing requirements.

$ pip install -r requirements.txt

Run with runtests.

$ ./runtests.py

You can also use the excellent tox testing tool to run the tests against all supported versions of Python and Django. Install tox globally, and then simply run:

$ tox
Owner
T. Franzel
T. Franzel
My solutions to the Advent of Code 2021 problems in Go and Python 🎄

🎄 Advent of Code 2021 🎄 Summary Advent of Code is an annual Advent calendar of programming puzzles. This year I am doing it in Go and Python. Runnin

Orfeas Antoniou 16 Jun 16, 2022
Loudchecker - Python script to check files for earrape

loudchecker python script to check files for earrape automatically installs depe

1 Jan 22, 2022
🌱 Complete API wrapper of Seedr.cc

Python API Wrapper of Seedr.cc Table of Contents Installation How I got the API endpoints? Start Guide Getting Token Logging with Username and Passwor

Hemanta Pokharel 43 Dec 26, 2022
Python syntax highlighted Markdown doctest.

phmdoctest 1.3.0 Introduction Python syntax highlighted Markdown doctest Command line program and Python library to test Python syntax highlighted cod

Mark Taylor 16 Aug 09, 2022
Markdown documentation generator from Google docstrings

mkgendocs A Python package for automatically generating documentation pages in markdown for Python source files by parsing Google style docstring. The

Davide Nunes 44 Dec 18, 2022
Comprehensive Python Cheatsheet

Comprehensive Python Cheatsheet Download text file, Buy PDF, Fork me on GitHub or Check out FAQ. Contents 1. Collections: List, Dictionary, Set, Tuple

Jefferson 1 Jan 23, 2022
Documentation for the lottie file format

Lottie Documentation This repository contains both human-readable and machine-readable documentation about the Lottie format The documentation is avai

LottieFiles 25 Jan 05, 2023
Documentation for GitHub Copilot

NOTE: GitHub Copilot discussions have moved to the Copilot Feedback forum. GitHub Copilot Welcome to the GitHub Copilot user community! In this reposi

GitHub 21.3k Dec 28, 2022
Data-science-on-gcp - Source code accompanying book: Data Science on the Google Cloud Platform, Valliappa Lakshmanan, O'Reilly 2017

data-science-on-gcp Source code accompanying book: Data Science on the Google Cloud Platform, 2nd Edition Valliappa Lakshmanan O'Reilly, Jan 2022 Bran

Google Cloud Platform 1.2k Dec 28, 2022
A Collection of Cheatsheets, Books, Questions, and Portfolio For DS/ML Interview Prep

Here are the sections: Data Science Cheatsheets Data Science EBooks Data Science Question Bank Data Science Case Studies Data Science Portfolio Data J

James Le 2.5k Jan 02, 2023
Members: Thomas Longuevergne Program: Network Security Course: 1DV501 Date of submission: 2021-11-02

Mini-project report Members: Thomas Longuevergne Program: Network Security Course: 1DV501 Date of submission: 2021-11-02 Introduction This project was

1 Nov 08, 2021
Elliptic curve cryptography (ed25519) beginner tutorials in Python 3

ed25519_tutorials Elliptic curve cryptography (ed25519) beginner tutorials in Python 3 Instructions Just download the repo and read the tutorial files

6 Dec 27, 2022
Documentation generator for C++ based on Doxygen and mosra/m.css.

mosra/m.css is a Doxygen-based documentation generator that significantly improves on Doxygen's default output by controlling some of Doxygen's more unruly options, supplying it's own slick HTML+CSS

Mark Gillard 109 Dec 07, 2022
Zero configuration Airflow plugin that let you manage your DAG files.

simple-dag-editor SimpleDagEditor is a zero configuration plugin for Apache Airflow. It provides a file managing interface that points to your dag_fol

30 Jul 20, 2022
Hjson for Python

hjson-py Hjson, a user interface for JSON Hjson works with Python 2.5+ and Python 3.3+ The Python implementation of Hjson is based on simplejson. For

Hjson 185 Dec 13, 2022
Demonstration that AWS IAM policy evaluation docs are incorrect

The flowchart from the AWS IAM policy evaluation documentation page, as of 2021-09-12, and dating back to at least 2018-12-27, is the following: The f

Ben Kehoe 15 Oct 21, 2022
Main repository for the Sphinx documentation builder

Sphinx Sphinx is a tool that makes it easy to create intelligent and beautiful documentation for Python projects (or other documents consisting of mul

5.1k Jan 02, 2023
A Python library that simplifies the extraction of datasets from XML content.

xmldataset: simple xml parsing 🗃️ XML Dataset: simple xml parsing Documentation: https://xmldataset.readthedocs.io A Python library that simplifies t

James Spurin 75 Dec 30, 2022
A simple flask application to collect annotations for the Turing Change Point Dataset, a benchmark dataset for change point detection algorithms

AnnotateChange Welcome to the repository of the "AnnotateChange" application. This application was created to collect annotations of time series data

The Alan Turing Institute 16 Jul 21, 2022
A markdown wiki and dashboarding system for Datasette

datasette-notebook A markdown wiki and dashboarding system for Datasette This is an experimental alpha and everything about it is likely to change. In

Simon Willison 19 Apr 20, 2022