This repository contains the DendroMap implementation for scalable and interactive exploration of image datasets in machine learning.

Overview

DendroMap

DendroMap is an interactive tool to explore large-scale image datasets used for machine learning.

A deep understanding of your data can be vital to train or debug your model effectively. However, due to the lack of structure and little-to-no metadata, it can be difficult to gain any insight into large-scale image datasets.

DendroMap adds structure to the data by hierarchically clustering together similar images. Then, the clusters are displayed in a modified treemap visualization that supports zooming.

Check out the live demo of DendroMap and explore for yourself on a few different datasets. If you're interested in

  • the DendroMap motivations
  • how we created the DendroMap visualization
  • DendroMap's effectiveness: user study on DendroMap compared to t-SNE grid for exploration

be sure to also check out our research paper:

Visual Exploration of Large-Scale Image Datasets for Machine Learning with Treemaps.
Donald Bertucci, Md Montaser Hamid, Yashwanthi Anand, Anita Ruangrotsakun, Delyar Tabatabai, Melissa Perez, and Minsuk Kahng.
arXiv preprint arXiv:2205.06935, 2022.

Use Your Own Data

In the public deployment, we hosted our data in the DendroMap Data repository. You can use your own data by following the instructions and example in the DendroMap Data README.md and you can use our python functions found in the clustering folder in this repo. There, you will find specific examples and instructions for how to generate the clustering files.

After generating those files, you can add another option in the src/dataOptions.js file as an object to specify how to read your data with the correct format. This is also detailed in the DendroMap Data README.md, and is simple as adding an option like this:

{
	dataset: "YOUR DATASET NAME",
	model: "YOUR MODEL NAME",
	cluster_filepath: "CLUSTER_FILEPATH",
	class_cluster_filepath: "CLASS_CLUSTER_FILEPATH**OPTIONAL**",
	image_filepath: "IMAGE_FILEPATH",
}

in the src/dataOptions.js options array. Paths start from the public folder, so put your data in there. For more information, go to the README.md in the clustering folder. Notebooks that computed the data in DendroMap Data are located there.

DendroMap Component

The DendroMap treemap visualization itself (not the whole project) only relies on having d3.js and the accompanying Javascript files in the src/components/dendroMap directory. You can reuse that Svelte component by importing from src/components/dendroMap/DendroMap.svelte.

The Component is used in src/App.svelte for an example on what props it takes. Here is the rundown of a simple example: at the bare minimum you can create the DendroMap component with these props (propName:type).

<DendroMap
	dendrogramData:dendrogramNode // (root node as nested JSON from dendrogram-data repo)
	imageFilepath:string // relative path from public dir
	imageWidth:number
	imageHeight:number
	width:number
	height:number
	numClustersShowing:number // > 1
/>

A more comprehensive list of props is below, but please look in the src/components/dendroMap/DendroMap.svelte file to see more details: there are many defaults arguments.

<DendroMap
	dendrogramData: dendrogramNode // (root node as nested JSON from dendrogram-data repo)
	imageFilepath: string // relative path from public dir
	imageWidth: number
	imageHeight: number
	width: number
	height: number
	numClustersShowing: number // > 1

	// the very long list of optional props that you can use to customize the DendroMap
	// ? is not in the actual name, just indicates optional
	highlightedOpacity?: number // between [0.0, 1.0]
	hiddenOpacity?: number // between [0.0, 1.0]
	transitionSpeed?: number // milliseconds for the animation of zooming
	clusterColorInterpolateCallback?: (normalized: number) => string // by default uses d3.interpolateGreys
	labelColorCallback?: (d: d3.HierarchyNode) => string
	labelSizeCallback?: (d: d3.HierarchyNode) => string
	misclassificationColor?: string
	outlineStrokeWidth?: string
	outerPadding?: number // the outer perimeter space of a rects
	innerPadding?: number // the touching inside space between rects
	topPadding?: number // additional top padding on the top of rects
	labelYSpace?: number // shifts the image grid down to make room for label on top

	currentParentCluster?: d3.HierarchyNode // this argument is used to bind: for svelte, not really a prop
	// breadth is the default and renders nodes left to right breadth first traversal
	// min_merging_distance is the common way to get dendrogram clusters from a dendrogram
	// max_node_count traverses and splits the next largest sized node, resulting in an even rendering
	renderingMethod?: "breadth" | "min_merging_distance" | "max_node_count" | "custom_sort"
	// this is only in effect if the renderingMethod is "custom_sort". Nodes last are popped and rendered first in the sort
	customSort?: (a: dendrogramNode, b: dendrogramNode) => number // see example in code
	imagesToFocus?: number[] // instance index of the ones to highlight
	outlineMisclassified?: boolean
	focusMisclassified?: boolean
	clusterLabelCallback?: (d: d3.HierarchyNode) => string
	imageTitleCallback?: (d: d3.HierarchyNode) => string

	// will fire based on user interaction
	// detail contains <T> {data: T, element: HTMLElement, event}
	on:imageClick?: ({detail}) => void
	on:imageMouseEnter?: ({detail}) => void
	on:imageMouseLeave?: ({detail}) => void
	on:clusterClick?: ({detail}) => void
	on:clusterMouseEnter?: ({detail}) => void
	on:clusterMouseLeave?: ({detail}) => void
/>

Run Locally!

This project uses Svelte. You can run the code on your local machine by using one of the following: development or build.

Development

cd dendromap      # inside the dendromap directory
npm install       # install packages if you haven't
npm run dev       # live-reloading server on port 8080

then navigate to port 8080 for a live-reloading on file change development server.

Build

cd dendromap		# inside the dendromap directory
npm install       	# install packages if you haven't
npm run build       	# build project
npm run start		# run on port 8080

then navigate to port 8080 for the static build server.

Links

Owner
DIV Lab
Data Interaction and Visualization Lab at Oregon State University
DIV Lab
Multiple-criteria decision-making (MCDM) with Electre, Promethee, Weighted Sum and Pareto

EasyMCDM - Quick Installation methods Install with PyPI Once you have created your Python environment (Python 3.6+) you can simply type: pip3 install

Labrak Yanis 6 Nov 22, 2022
[CVPR 2021] Forecasting the panoptic segmentation of future video frames

Panoptic Segmentation Forecasting Colin Graber, Grace Tsai, Michael Firman, Gabriel Brostow, Alexander Schwing - CVPR 2021 [Link to paper] We propose

Niantic Labs 44 Nov 29, 2022
Speeding-Up Back-Propagation in DNN: Approximate Outer Product with Memory

Approximate Outer Product Gradient Descent with Memory Code for the numerical experiment of the paper Speeding-Up Back-Propagation in DNN: Approximate

2 Mar 02, 2022
This is an open source library implementing hyperbox-based machine learning algorithms

hyperbox-brain is a Python open source toolbox implementing hyperbox-based machine learning algorithms built on top of scikit-learn and is distributed

Complex Adaptive Systems (CAS) Lab - University of Technology Sydney 21 Dec 14, 2022
Code for the ICCV 2021 Workshop paper: A Unified Efficient Pyramid Transformer for Semantic Segmentation.

Unified-EPT Code for the ICCV 2021 Workshop paper: A Unified Efficient Pyramid Transformer for Semantic Segmentation. Installation Linux, CUDA=10.0,

29 Aug 23, 2022
Marine debris detection with commercial satellite imagery and deep learning.

Marine debris detection with commercial satellite imagery and deep learning. Floating marine debris is a global pollution problem which threatens mari

Inter Agency Implementation and Advanced Concepts 56 Dec 16, 2022
Synthesizing and manipulating 2048x1024 images with conditional GANs

pix2pixHD Project | Youtube | Paper Pytorch implementation of our method for high-resolution (e.g. 2048x1024) photorealistic image-to-image translatio

NVIDIA Corporation 6k Dec 27, 2022
Modelisation on galaxy evolution using PEGASE-HR

model_galaxy Modelisation on galaxy evolution using PEGASE-HR This is a labwork done in internship at IAP directed by Damien Le Borgne (https://github

Adrien Anthore 1 Jan 14, 2022
Implementation of ResMLP, an all MLP solution to image classification, in Pytorch

ResMLP - Pytorch Implementation of ResMLP, an all MLP solution to image classification out of Facebook AI, in Pytorch Install $ pip install res-mlp-py

Phil Wang 178 Dec 02, 2022
Data labels and scripts for fastMRI.org

fastMRI+: Clinical pathology annotations for the fastMRI dataset The fastMRI dataset is a publicly available MRI raw (k-space) dataset. It has been us

Microsoft 51 Dec 22, 2022
EigenGAN Tensorflow, EigenGAN: Layer-Wise Eigen-Learning for GANs

Gender Bangs Body Side Pose (Yaw) Lighting Smile Face Shape Lipstick Color Painting Style Pose (Yaw) Pose (Pitch) Zoom & Rotate Flush & Eye Color Mout

Zhenliang He 321 Dec 01, 2022
One Million Scenes for Autonomous Driving

ONCE Benchmark This is a reproduced benchmark for 3D object detection on the ONCE (One Million Scenes) dataset. The code is mainly based on OpenPCDet.

148 Dec 28, 2022
Low-dose Digital Mammography with Deep Learning

Impact of loss functions on the performance of a deep neural network designed to restore low-dose digital mammography ====== This repository contains

WANG-AXIS 6 Dec 13, 2022
Learning Off-Policy with Online Planning, CoRL 2021

LOOP: Learning Off-Policy with Online Planning Accepted in Conference of Robot Learning (CoRL) 2021. Harshit Sikchi, Wenxuan Zhou, David Held Paper In

Harshit Sikchi 24 Nov 22, 2022
The implementation our EMNLP 2021 paper "Enhanced Language Representation with Label Knowledge for Span Extraction".

LEAR The implementation our EMNLP 2021 paper "Enhanced Language Representation with Label Knowledge for Span Extraction". **The code is in the "master

杨攀 93 Jan 07, 2023
E2e music remastering system - End-to-end Music Remastering System Using Self-supervised and Adversarial Training

End-to-end Music Remastering System This repository includes source code and pre

Junghyun (Tony) Koo 37 Dec 15, 2022
Simple tool to combine(merge) onnx models. Simple Network Combine Tool for ONNX.

snc4onnx Simple tool to combine(merge) onnx models. Simple Network Combine Tool for ONNX. https://github.com/PINTO0309/simple-onnx-processing-tools 1.

Katsuya Hyodo 8 Oct 13, 2022
On Generating Extended Summaries of Long Documents

ExtendedSumm This repository contains the implementation details and datasets used in On Generating Extended Summaries of Long Documents paper at the

Georgetown Information Retrieval Lab 76 Sep 05, 2022
A convolutional recurrent neural network for classifying A/B phases in EEG signals recorded for sleep analysis.

CAP-Classification-CRNN A deep learning model based on Inception modules paired with gated recurrent units (GRU) for the classification of CAP phases

Apurva R. Umredkar 2 Nov 25, 2022
Anagram Generator in Python

Anagrams Generator This is a program for computing multiword anagrams. It makes no effort to come up with sentences that make sense; it only finds ana

Day Fundora 5 Nov 17, 2022