A PyTorch implementation of the Relational Graph Convolutional Network (RGCN).

Overview

Torch-RGCN

Torch-RGCN is a PyTorch implementation of the RGCN, originally proposed by Schlichtkrull et al. in
Modeling Relational Data with Graph Convolutional Networks.

In our paper, we reproduce the link prediction and node classification experiments from the original paper and using our reproduction we explain the RGCN. Furthermore, we present two new configurations of the RGCN.

Getting started

Requirements:

  • Conda >= 4.8
  • Python >= 3.7

Do the following:

  1. Download all datasets: bash get_data.sh

  2. Install the dependencies inside a new virtual environment: bash setup_dependencies.sh

  3. Activate the virtual environment: conda activate torch_rgcn_venv

  4. Install the torch-RGCN module: pip install -e .

Usage

Configuration files

The hyper-parameters for the different experiments can be found in YAML files under configs. The naming convention of the files is as follows: configs/{MODEL}/{EXPERIMENT}-{DATASET}.yaml

Models

  • rgcn - Standard RGCN Model
  • c-rgcn - Compression RGCN Model
  • e-rgcn - Embedding RGCN Model

Experiments

  • lp - Link Prediction
  • nc - Node Classification

Datasets

Link Prediction

  • WN18
  • FB-Toy

Node Classification

  • AIFB
  • MUTAG
  • BGS
  • AM

Part 1: Reproduction

Link Prediction

Link Prediction Model

Original Link Prediction Implementation: https://github.com/MichSchli/RelationPrediction

To run the link prediction experiment using the RGCN model using:

python experiments/predict_links.py with configs/rgcn/lp-{DATASET}.yaml

Make sure to replace {DATASET} with one of the following dataset names: FB-toy or WN18.

Node Classification

Node Classification Model

Original Node Classification Implementation: https://github.com/tkipf/relational-gcn

To run the node classification experiment using the RGCN model using:

python experiments/classify_nodes.py with configs/rgcn/nc-{DATASET}.yaml

Make sure to replace {DATASET} with one of the following dataset names: AIFB, MUTAG, BGS or AM.

Part 2: New RGCN Configurations

Node Classification with Node Embeddings

To run the node classification experiment use:

python experiments/classify_nodes.py with configs/e-rgcn/nc-{DATASET}.yaml

Make sure to replace {DATASET} with one of the following dataset names: AIFB, MUTAG, BGS or AM.

Link Prediction Compressed Node Embeddings

c-RGCN Link Prediction Model

To run the link prediction experiment use:

python experiments/predict_links.py with configs/c-rgcn/lp-{DATASET}.yaml

Make sure to replace {DATASET} with one of the following dataset names: FB-toy, or WN18.


Dataset References

Node Classification

Link Prediction

Owner
Thiviyan Singam
PhD candidate at University of Amsterdam
Thiviyan Singam
A CNN model to detect hand gestures.

Software Used python - programming language used, tested on v3.8 miniconda - for managing virtual environment Libraries Used opencv - pip install open

Shivanshu 6 Jul 14, 2022
LineBoard - Python+React+MySQL-白板即時系統改善人群行為

LineBoard-白板即時系統改善人群行為 即時顯示實驗室的使用狀況,並遠端預約排隊,以此來改善人們的工作效率 程式架構 運作流程 使用者先至該實驗室網站預約

Bo-Jyun Huang 1 Feb 22, 2022
GBIM(Gesture-Based Interaction map)

手势交互地图 GBIM(Gesture-Based Interaction map),基于视觉深度神经网络的交互地图,通过电脑摄像头观察使用者的手势变化,进而控制地图进行简单的交互。网络使用PaddleX提供的轻量级模型PPYOLO Tiny以及MobileNet V3 small,使得整个模型大小约10MB左右,即使在CPU下也能快速定位和识别手势。

8 Feb 10, 2022
Syllabus del curso IIC2115 - Programación como Herramienta para la Ingeniería 2022/I

IIC2115 - Programación como Herramienta para la Ingeniería Videos y tutoriales Tutorial CMD Tutorial Instalación Python y Jupyter Tutorial de git-GitH

21 Nov 09, 2022
For auto aligning, cropping, and scaling HR and LR images for training image based neural networks

ImgAlign For auto aligning, cropping, and scaling HR and LR images for training image based neural networks Usage Make sure OpenCV is installed, 'pip

15 Dec 04, 2022
Reimplementation of the paper "Attention, Learn to Solve Routing Problems!" in jax/flax.

JAX + Attention Learn To Solve Routing Problems Reinplementation of the paper Attention, Learn to Solve Routing Problems! using Jax and Flax. Fully su

Gabriela Surita 7 Dec 01, 2022
Semi-Supervised Learning, Object Detection, ICCV2021

End-to-End Semi-Supervised Object Detection with Soft Teacher By Mengde Xu*, Zheng Zhang*, Han Hu, Jianfeng Wang, Lijuan Wang, Fangyun Wei, Xiang Bai,

Microsoft 789 Dec 27, 2022
Code release for SLIP Self-supervision meets Language-Image Pre-training

SLIP: Self-supervision meets Language-Image Pre-training What you can find in this repo: Pre-trained models (with ViT-Small, Base, Large) and code to

Meta Research 621 Dec 31, 2022
Supplementary code for the experiments described in the 2021 ISMIR submission: Leveraging Hierarchical Structures for Few Shot Musical Instrument Recognition.

Music Trees Supplementary code for the experiments described in the 2021 ISMIR submission: Leveraging Hierarchical Structures for Few Shot Musical Ins

Hugo Flores García 32 Nov 22, 2022
Tutorials and implementations for "Self-normalizing networks"

Self-Normalizing Networks Tutorials and implementations for "Self-normalizing networks"(SNNs) as suggested by Klambauer et al. (arXiv pre-print). Vers

Institute of Bioinformatics, Johannes Kepler University Linz 1.6k Jan 07, 2023
AutoDeeplab / auto-deeplab / AutoML for semantic segmentation, implemented in Pytorch

AutoML for Image Semantic Segmentation Currently this repo contains the only working open-source implementation of Auto-Deeplab which, by the way out-

AI Necromancer 299 Dec 17, 2022
This is an official implementation of our CVPR 2021 paper "Bottom-Up Human Pose Estimation Via Disentangled Keypoint Regression" (https://arxiv.org/abs/2104.02300)

Bottom-Up Human Pose Estimation Via Disentangled Keypoint Regression Introduction In this paper, we are interested in the bottom-up paradigm of estima

HRNet 367 Dec 27, 2022
Deep ViT Features as Dense Visual Descriptors

dino-vit-features [paper] [project page] Official implementation of the paper "Deep ViT Features as Dense Visual Descriptors". We demonstrate the effe

Shir Amir 113 Dec 24, 2022
Data-Uncertainty Guided Multi-Phase Learning for Semi-supervised Object Detection

An official implementation of paper Data-Uncertainty Guided Multi-Phase Learning for Semi-supervised Object Detection

11 Nov 23, 2022
EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation

EFENet EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation Code is a bit messy now. I woud clean up soon. For training the EF

Yaping Zhao 19 Nov 05, 2022
3D-CariGAN: An End-to-End Solution to 3D Caricature Generation from Normal Face Photos

3D-CariGAN: An End-to-End Solution to 3D Caricature Generation from Normal Face Photos This repository contains the source code and dataset for the pa

54 Oct 09, 2022
Automated image registration. Registrationimation was too much of a mouthful.

alignimation Automated image registration. Registrationimation was too much of a mouthful. This repo contains the code used for my blog post Alignimat

Ethan Rosenthal 9 Oct 13, 2022
Async API for controlling Hue Lights

Hue API Async API for controlling Hue Lights Documentation: hue-api.nirantak.com Source: github.com/nirantak/hue-api Installation This is an async cli

Nirantak Raghav 4 Nov 16, 2022
Implementation of self-attention mechanisms for general purpose. Focused on computer vision modules. Ongoing repository.

Self-attention building blocks for computer vision applications in PyTorch Implementation of self attention mechanisms for computer vision in PyTorch

AI Summer 962 Dec 23, 2022
Semi-Supervised 3D Hand-Object Poses Estimation with Interactions in Time

Semi Hand-Object Semi-Supervised 3D Hand-Object Poses Estimation with Interactions in Time (CVPR 2021).

96 Dec 27, 2022