LSTM Neural Networks for Spectroscopic Studies of Type Ia Supernovae

Overview

Package Description

The difficulties in acquiring spectroscopic data have been a major challenge for supernova surveys. snlstm is developed to provide a data-driven solution. Based on an observation dataset including 3091 spectra from 361 individual SNe Ia, we trained LSTM neural networks to learn from the spectroscopic time-series data of type Ia supernovae. The model enables the construction of spectral sequences from spectroscopic observations with very limited time coverage.

This repository is associated to the paper "Spectroscopic Studies of Type Ia Supernovae Using LSTM Neural Networks (Hu et al. 2021, ApJ, under review)".

Installation

One can install any desired version of snlstm from Github https://github.com/thomasvrussell/snlstm:

python setup.py install

Additional dependencies

  • R : In order to reduce the data dimension, we use Functional Principal Component Analysis (FPCA) to parameterize supernova spectra before feeding them into neural networks. The FPCA parameterization and FPCA reconstruction are achieved by the fpca package in R programming language. One can install them, e.g., on CentOS

    $ yum install R
    R > install.packages("fpca")
    
  • TensorFlow : tensorflow is required to load a given LSTM model and make the spectral predictions. The default LSTM model in this repository is trained on an enviornment with tensorflow 1.14.0. To avoid potential incompatiability issues casued by different tensorflow versions, we recommend users to install the same version via Conda

    conda install -c anaconda tensorflow=1.14.0
    
  • PYPHOT (optional) : pyphot is a portable package to compute synthetic photometry of a spectrum with given filter. In our work, the tool was used to correct the continuum component of a supernova spectrum so that its synthetic photometry could be in line with the observed light curves. One may consider to install the package if such color calibration is necessary. We recommend users to install the latest version from Github (pyphot 1.1)

    pip install git+https://github.com/mfouesneau/pyphot
    

Download archival datasets

snlstm allows users to access to the following archival datasets

[1] A spectral-observation dataset : it is comprised of 3091 observed spectra from 361 SNe Ia, largely contributed from CfA (Blondin et al. 2012), BSNIP (Silverman et al. 2012), CSP (Folatelli et al. 2013) and Supernova Polarimetry Program (Wang & Wheeler 2008; Cikota et al. 2019a; Yang et al. 2020).
[2] A spectral-template dataset : it includes 361 spectral templates, each of them (covering -15 to +33d with wavelength from 3800 to 7200 A) was generated from the available spectroscopic observations of an individual SN via a LSTM neural network model.
[3] An auxiliary photometry dataset : it provides the B & V light curves of these SNe (in total, 196 available), that were used to calibrate the synthetic B-V color of the observed spectra.

These datasets are stored on Zenodo platform, one can download the related files (~ 2GB) through the Zenodo page: https://doi.org/10.5281/zenodo.5637790.

Quick start guide

We prepared several jupyter notebooks as quick tutorials to use our package in a friendly way.

[*] 1-Access_to_Archival_ObservationData.ipynb : this notebook is to show how to access to the spectral-observation dataset and the auxiliary photometry dataset.
[†] 2-Access_to_Archival_TemplateData.ipynb : one can obtain the LSTM generated spectral time sequences in the spectral-template dataset following this notebook.
[‡] 3-SpecData_Process_Example.ipynb : the notebook demonstrates the pre-processing of the spectroscopic data described in our paper, including smooth, rebinning, lines removal and color calibration, etc.
[§] 4-LSTM_Predictions_on_New_SN.ipynb : the notebook provides a guide for users who want apply our LSTM model on very limited spectroscopic data of newly discovered SNe Ia. In this notebook, we use SN 2016coj, a well-observed SN Ia from the latest BSNIP data release, as an example.
[¶] 5-LSTM_Estimate_Spectral_Phase.ipynb : our neural network is trained based on the spectral data with known phases, however, it is still possible to apply the model to the spectra without any prior phase knownlege. The idea is wrong given phase of input spectrum will degrade the predictive accuracy of our method, that is to say, we can find the best-fit phase of input spectrum by minimizing the accuacy of prediction for itself. This notebook is to show how to estimate spectral phase via our model. For the case of SN 2016coj in the notebook, the estimation errors are around 0.5 - 2.0d.

Publications use our method

  • SN2018agk: A prototypical Type Ia Supernova with a smooth power-law rise in Kepler (K2) (Qinan Wang, et al., 2021, ApJ, see Figure 5 & 6).

Todo list

  • Support spectral sequence with arbitrary timesteps as input. (current model only accepts spectral pair inputs.)
  • Support more flexible wavelength range for input spectra. (current model is trained on spectra with uniform wavelength range from 3800 to 7200 A.)

Common issues

TBD

Development

The latest source code can be obtained from https://github.com/thomasvrussell/snlstm.

When submitting bug reports or questions via the issue tracker, please include the following information:

  • OS platform.
  • Python version.
  • Tensorflow version.
  • Version of snlstm.

Cite

Spectroscopic Studies of Type Ia Supernovae Using LSTM Neural Networks (Hu et al. 2021, ApJ, under review).

You might also like...
Incorporating Transformer and LSTM to Kalman Filter with EM algorithm

Deep learning based state estimation: incorporating Transformer and LSTM to Kalman Filter with EM algorithm Overview Kalman Filter requires the true p

Forecasting directional movements of stock prices for intraday trading using LSTM and random forest
Forecasting directional movements of stock prices for intraday trading using LSTM and random forest

Forecasting directional movements of stock-prices for intraday trading using LSTM and random-forest https://arxiv.org/abs/2004.10178 Pushpendu Ghosh,

Deep learning based hand gesture recognition using LSTM and MediaPipie.
Deep learning based hand gesture recognition using LSTM and MediaPipie.

Hand Gesture Recognition Deep learning based hand gesture recognition using LSTM and MediaPipie. Demo video using PingPong Robot Files Pretrained mode

A3C LSTM  Atari with Pytorch plus A3G design
A3C LSTM Atari with Pytorch plus A3G design

NEWLY ADDED A3G A NEW GPU/CPU ARCHITECTURE OF A3C FOR SUBSTANTIALLY ACCELERATED TRAINING!! RL A3C Pytorch NEWLY ADDED A3G!! New implementation of A3C

Tree LSTM implementation in PyTorch

Tree-Structured Long Short-Term Memory Networks This is a PyTorch implementation of Tree-LSTM as described in the paper Improved Semantic Representati

Sign Language is detected in realtime using video sequences. Our approach involves MediaPipe Holistic for keypoints extraction and LSTM Model for prediction.
Sign Language is detected in realtime using video sequences. Our approach involves MediaPipe Holistic for keypoints extraction and LSTM Model for prediction.

RealTime Sign Language Detection using Action Recognition Approach Real-Time Sign Language is commonly predicted using models whose architecture consi

LSTM and QRNN Language Model Toolkit for PyTorch

LSTM and QRNN Language Model Toolkit This repository contains the code used for two Salesforce Research papers: Regularizing and Optimizing LSTM Langu

Multi-layer convolutional LSTM with Pytorch

Convolution_LSTM_pytorch Thanks for your attention. I haven't got time to maintain this repo for a long time. I recommend this repo which provides an

A Simple LSTM-Based Solution for "Heartbeat Signal Classification and Prediction" in Tianchi

LSTM-Time-Series-Prediction A Simple LSTM-Based Solution for "Heartbeat Signal Classification and Prediction" in Tianchi Contest. The Link of the Cont

Releases(v1.1.2)
Unbiased Learning To Rank Algorithms (ULTRA)

This is an Unbiased Learning To Rank Algorithms (ULTRA) toolbox, which provides a codebase for experiments and research on learning to rank with human annotated or noisy labels.

71 Dec 01, 2022
EDPN: Enhanced Deep Pyramid Network for Blurry Image Restoration

EDPN: Enhanced Deep Pyramid Network for Blurry Image Restoration Ruikang Xu, Zeyu Xiao, Jie Huang, Yueyi Zhang, Zhiwei Xiong. EDPN: Enhanced Deep Pyra

69 Dec 15, 2022
Implementation of C-RNN-GAN.

Implementation of C-RNN-GAN. Publication: Title: C-RNN-GAN: Continuous recurrent neural networks with adversarial training Information: http://mogren.

Olof Mogren 427 Dec 25, 2022
This thesis is mainly concerned with state-space methods for a class of deep Gaussian process (DGP) regression problems

Doctoral dissertation of Zheng Zhao This thesis is mainly concerned with state-space methods for a class of deep Gaussian process (DGP) regression pro

Zheng Zhao 21 Nov 14, 2022
Yolov5-lite - Minimal PyTorch implementation of YOLOv5

Yolov5-Lite: Minimal YOLOv5 + Deep Sort Overview This repo is a shortened versio

Kadir Nar 57 Nov 28, 2022
Meta-learning for NLP

Self-Supervised Meta-Learning for Few-Shot Natural Language Classification Tasks Code for training the meta-learning models and fine-tuning on downstr

IESL 43 Nov 08, 2022
Using this codebase as a tool for my own research. Making some modifications to the original repo for my own purposes.

For SwapNet Create a list.txt file containing all the images to process. This can be done with the GNU find command: find path/to/input/folder -name '

Andrew Jong 2 Nov 10, 2021
Unoffical implementation about Image Super-Resolution via Iterative Refinement by Pytorch

Image Super-Resolution via Iterative Refinement Paper | Project Brief This is a unoffical implementation about Image Super-Resolution via Iterative Re

LiangWei Jiang 2.5k Jan 02, 2023
Convex optimization for fun and profit.

CFMM Optimal Routing This repository contains the code needed to generate the figures used in the paper Optimal Routing for Constant Function Market M

Guillermo Angeris 183 Dec 29, 2022
The (Official) PyTorch Implementation of the paper "Deep Extraction of Manga Structural Lines"

MangaLineExtraction_PyTorch The (Official) PyTorch Implementation of the paper "Deep Extraction of Manga Structural Lines" Usage model_torch.py [sourc

Miaomiao Li 82 Jan 02, 2023
ComPhy: Compositional Physical Reasoning ofObjects and Events from Videos

ComPhy This repository holds the code for the paper. ComPhy: Compositional Physical Reasoning ofObjects and Events from Videos, (Under review) PDF Pro

29 Dec 29, 2022
The repository contain code for building compiler using puthon.

Building Compiler This is a python implementation of JamieBuild's "Super Tiny Compiler" Overview JamieBuilds developed a wonderfully educative compile

Shyam Das Shrestha 1 Nov 21, 2021
A New Open-Source Off-road Environment for Benchmark Generalization of Autonomous Driving

A New Open-Source Off-road Environment for Benchmark Generalization of Autonomous Driving Isaac Han, Dong-Hyeok Park, and Kyung-Joong Kim IEEE Access

13 Dec 27, 2022
Tools for investing in Python

InvestOps Original repository on GitHub Original author is Magnus Erik Hvass Pedersen Introduction This is a Python package with simple and effective

24 Nov 26, 2022
A Fast and Stable GAN for Small and High Resolution Imagesets - pytorch

A Fast and Stable GAN for Small and High Resolution Imagesets - pytorch The official pytorch implementation of the paper "Towards Faster and Stabilize

Bingchen Liu 455 Jan 08, 2023
Official code for 'Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentationon Complex Urban Driving Scenes'

PEBAL This repo contains the Pytorch implementation of our paper: Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentation on Complex Urb

Yu Tian 117 Jan 03, 2023
A Differentiable Recipe for Learning Visual Non-Prehensile Planar Manipulation

A Differentiable Recipe for Learning Visual Non-Prehensile Planar Manipulation This repository contains the source code of the paper A Differentiable

Bernardo Aceituno 2 May 05, 2022
Real-time 3D multi-person detection made easy with OpenPose and the ZED

OpenPose ZED This sample show how to simply use the ZED with OpenPose, the deep learning framework that detects the skeleton from a single 2D image. T

blanktec 5 Nov 06, 2020
deep learning model with only python and numpy with test accuracy 99 % on mnist dataset and different optimization choices

deep_nn_model_with_only_python_100%_test_accuracy deep learning model with only python and numpy with test accuracy 99 % on mnist dataset and differen

0 Aug 28, 2022
Dynamic Multi-scale Filters for Semantic Segmentation (DMNet ICCV'2019)

Dynamic Multi-scale Filters for Semantic Segmentation (DMNet ICCV'2019) Introduction Official implementation of Dynamic Multi-scale Filters for Semant

23 Oct 21, 2022