PyEmits, a python package for easy manipulation in time-series data.

Related tags

Data AnalysisPyEmits
Overview

Project Icon

PyEmits, a python package for easy manipulation in time-series data. Time-series data is very common in real life.

  • Engineering
  • FSI industry (Financial Services Industry)
  • FMCG (Fast Moving Consumer Good)

Data scientist's work consists of:

  • forecasting
  • prediction/simulation
  • data prepration
  • cleansing
  • anomaly detection
  • descriptive data analysis/exploratory data analysis

each new business unit shall build the following wheels again and again

  1. data pipeline
    1. extraction
    2. transformation
      1. cleansing
      2. feature engineering
      3. remove outliers
      4. AI landing for prediction, forecasting
    3. write it back to database
  2. ml framework
    1. multiple model training
    2. multiple model prediction
    3. kfold validation
    4. anomaly detection
    5. forecasting
    6. deep learning model in easy way
    7. ensemble modelling
  3. exploratory data analysis
    1. descriptive data analysis
    2. ...

That's why I create this project, also for fun. haha

This project is under active development, free to use (Apache 2.0) I am happy to see anyone can contribute for more advancement on features

Install

pip install pyemits

Features highlight

  1. Easy training
import numpy as np

from pyemits.core.ml.regression.trainer import RegTrainer, RegressionDataModel

X = np.random.randint(1, 100, size=(1000, 10))
y = np.random.randint(1, 100, size=(1000, 1))

raw_data_model = RegressionDataModel(X, y)
trainer = RegTrainer(['XGBoost'], [None], raw_data_model)
trainer.fit()
  1. Accept neural network as model
import numpy as np

from pyemits.core.ml.regression.trainer import RegTrainer, RegressionDataModel
from pyemits.core.ml.regression.nn import KerasWrapper

X = np.random.randint(1, 100, size=(1000, 10, 10))
y = np.random.randint(1, 100, size=(1000, 4))

keras_lstm_model = KerasWrapper.from_simple_lstm_model((10, 10), 4)
raw_data_model = RegressionDataModel(X, y)
trainer = RegTrainer([keras_lstm_model], [None], raw_data_model)
trainer.fit()

also keep flexibility on customized model

import numpy as np

from pyemits.core.ml.regression.trainer import RegTrainer, RegressionDataModel
from pyemits.core.ml.regression.nn import KerasWrapper

X = np.random.randint(1, 100, size=(1000, 10, 10))
y = np.random.randint(1, 100, size=(1000, 4))

from keras.layers import Dense, Dropout, LSTM
from keras import Sequential

model = Sequential()
model.add(LSTM(128,
               activation='softmax',
               input_shape=(10, 10),
               ))
model.add(Dropout(0.1))
model.add(Dense(4))
model.compile(loss='mse', optimizer='adam', metrics=['mse'])

keras_lstm_model = KerasWrapper(model, nickname='LSTM')
raw_data_model = RegressionDataModel(X, y)
trainer = RegTrainer([keras_lstm_model], [None], raw_data_model)
trainer.fit()

or attach it in algo config

import numpy as np

from pyemits.core.ml.regression.trainer import RegTrainer, RegressionDataModel
from pyemits.core.ml.regression.nn import KerasWrapper
from pyemits.common.config_model import KerasSequentialConfig

X = np.random.randint(1, 100, size=(1000, 10, 10))
y = np.random.randint(1, 100, size=(1000, 4))

from keras.layers import Dense, Dropout, LSTM
from keras import Sequential

keras_lstm_model = KerasWrapper(nickname='LSTM')
config = KerasSequentialConfig(layer=[LSTM(128,
                                           activation='softmax',
                                           input_shape=(10, 10),
                                           ),
                                      Dropout(0.1),
                                      Dense(4)],
                               compile=dict(loss='mse', optimizer='adam', metrics=['mse']))

raw_data_model = RegressionDataModel(X, y)
trainer = RegTrainer([keras_lstm_model],
                     [config],
                     raw_data_model, 
                     {'fit_config' : [dict(epochs=10, batch_size=32)]})
trainer.fit()

PyTorch, MXNet under development you can leave me a message if you want to contribute

  1. MultiOutput training
import numpy as np 

from pyemits.core.ml.regression.trainer import RegressionDataModel, MultiOutputRegTrainer
from pyemits.core.preprocessing.splitting import SlidingWindowSplitter

X = np.random.randint(1, 100, size=(10000, 1))
y = np.random.randint(1, 100, size=(10000, 1))

# when use auto-regressive like MultiOutput, pls set ravel = True
# ravel = False, when you are using LSTM which support multiple dimension
splitter = SlidingWindowSplitter(24,24,ravel=True)
X, y = splitter.split(X, y)

raw_data_model = RegressionDataModel(X,y)
trainer = MultiOutputRegTrainer(['XGBoost'], [None], raw_data_model)
trainer.fit()
  1. Parallel training
    • provide fast training using parallel job
    • use RegTrainer as base, but add Parallel running
import numpy as np 

from pyemits.core.ml.regression.trainer import RegressionDataModel, ParallelRegTrainer

X = np.random.randint(1, 100, size=(10000, 1))
y = np.random.randint(1, 100, size=(10000, 1))

raw_data_model = RegressionDataModel(X,y)
trainer = ParallelRegTrainer(['XGBoost', 'LightGBM'], [None, None], raw_data_model)
trainer.fit()

or you can use RegTrainer for multiple model, but it is not in Parallel job

import numpy as np 

from pyemits.core.ml.regression.trainer import RegressionDataModel,  RegTrainer

X = np.random.randint(1, 100, size=(10000, 1))
y = np.random.randint(1, 100, size=(10000, 1))

raw_data_model = RegressionDataModel(X,y)
trainer = RegTrainer(['XGBoost', 'LightGBM'], [None, None], raw_data_model)
trainer.fit()
  1. KFold training
    • KFoldConfig is global config, will apply to all
import numpy as np 

from pyemits.core.ml.regression.trainer import RegressionDataModel,  KFoldCVTrainer
from pyemits.common.config_model import KFoldConfig

X = np.random.randint(1, 100, size=(10000, 1))
y = np.random.randint(1, 100, size=(10000, 1))

raw_data_model = RegressionDataModel(X,y)
trainer = KFoldCVTrainer(['XGBoost', 'LightGBM'], [None, None], raw_data_model, {'kfold_config':KFoldConfig(n_splits=10)})
trainer.fit()
  1. Easy prediction
import numpy as np 
from pyemits.core.ml.regression.trainer import RegressionDataModel,  RegTrainer
from pyemits.core.ml.regression.predictor import RegPredictor

X = np.random.randint(1, 100, size=(10000, 1))
y = np.random.randint(1, 100, size=(10000, 1))

raw_data_model = RegressionDataModel(X,y)
trainer = RegTrainer(['XGBoost', 'LightGBM'], [None, None], raw_data_model)
trainer.fit()

predictor = RegPredictor(trainer.clf_models, 'RegTrainer')
predictor.predict(RegressionDataModel(X))
  1. Forecast at scale
  2. Data Model
from pyemits.common.data_model import RegressionDataModel
import numpy as np
X = np.random.randint(1, 100, size=(1000,10,10))
y = np.random.randint(1, 100, size=(1000, 1))

data_model = RegressionDataModel(X, y)

data_model._update_variable('X_shape', (1000,10,10))
data_model.X_shape

data_model.add_meta_data('X_shape', (1000,10,10))
data_model.meta_data
  1. Anomaly detection (under development)
  2. Evaluation (under development)
    • see module: evaluation
    • backtesting
    • model evaluation
  3. Ensemble (under development)
    • blending
    • stacking
    • voting
    • by combo package
      • moa
      • aom
      • average
      • median
      • maximization
  4. IO
    • db connection
    • local
  5. dashboard ???
  6. other miscellaneous feature
    • continuous evaluation
    • aggregation
    • dimensional reduction
    • data profile (intensive data overview)
  7. to be confirmed

References

the following libraries gave me some idea/insight

  1. greykit
    1. changepoint detection
    2. model summary
    3. seaonality
  2. pytorch-forecasting
  3. darts
  4. pyaf
  5. orbit
  6. kats/prophets by facebook
  7. sktime
  8. gluon ts
  9. tslearn
  10. pyts
  11. luminaries
  12. tods
  13. autots
  14. pyodds
  15. scikit-hts
You might also like...
Python package to transfer data in a fast, reliable, and packetized form.

pySerialTransfer Python package to transfer data in a fast, reliable, and packetized form.

Amundsen is a metadata driven application for improving the productivity of data analysts, data scientists and engineers when interacting with data.
Amundsen is a metadata driven application for improving the productivity of data analysts, data scientists and engineers when interacting with data.

Amundsen is a metadata driven application for improving the productivity of data analysts, data scientists and engineers when interacting with data.

Elementary is an open-source data reliability framework for modern data teams. The first module of the framework is data lineage.
Elementary is an open-source data reliability framework for modern data teams. The first module of the framework is data lineage.

Data lineage made simple, reliable, and automated. Effortlessly track the flow of data, understand dependencies and analyze impact. Features Visualiza

A powerful data analysis package based on mathematical step functions.  Strongly aligned with pandas.
A powerful data analysis package based on mathematical step functions. Strongly aligned with pandas.

The leading use-case for the staircase package is for the creation and analysis of step functions. Pretty exciting huh. But don't hit the close button

small package with utility functions for analyzing (fly) calcium imaging data
small package with utility functions for analyzing (fly) calcium imaging data

fly2p Tools for analyzing two-photon (2p) imaging data collected with Vidrio Scanimage software and micromanger. Loading scanimage data relies on scan

 Integrate bus data from a variety of sources (batch processing and real time processing).
Integrate bus data from a variety of sources (batch processing and real time processing).

Purpose: This is integrate bus data from a variety of sources such as: csv, json api, sensor data ... into Relational Database (batch processing and r

A real-time financial data streaming pipeline and visualization platform using Apache Kafka, Cassandra, and Bokeh.
A real-time financial data streaming pipeline and visualization platform using Apache Kafka, Cassandra, and Bokeh.

Realtime Financial Market Data Visualization and Analysis Introduction This repo shows my project about real-time stock data pipeline. All the code is

Fast, flexible and easy to use probabilistic modelling in Python.
Fast, flexible and easy to use probabilistic modelling in Python.

Please consider citing the JMLR-MLOSS Manuscript if you've used pomegranate in your academic work! pomegranate is a package for building probabilistic

Pandas on AWS - Easy integration with Athena, Glue, Redshift, Timestream, QuickSight, Chime, CloudWatchLogs, DynamoDB, EMR, SecretManager, PostgreSQL, MySQL, SQLServer and S3 (Parquet, CSV, JSON and EXCEL).
Pandas on AWS - Easy integration with Athena, Glue, Redshift, Timestream, QuickSight, Chime, CloudWatchLogs, DynamoDB, EMR, SecretManager, PostgreSQL, MySQL, SQLServer and S3 (Parquet, CSV, JSON and EXCEL).

AWS Data Wrangler Pandas on AWS Easy integration with Athena, Glue, Redshift, Timestream, QuickSight, Chime, CloudWatchLogs, DynamoDB, EMR, SecretMana

Releases(v0.1.2)
Owner
Thompson
Data Analyst, Scientist, Engineer, Research and Development
Thompson
INFO-H515 - Big Data Scalable Analytics

INFO-H515 - Big Data Scalable Analytics Jacopo De Stefani, Giovanni Buroni, Théo Verhelst and Gianluca Bontempi - Machine Learning Group Exercise clas

Yann-Aël Le Borgne 58 Dec 11, 2022
A notebook to analyze Amazon Recommendation Review Dataset.

Amazon Recommendation Review Dataset Analyzer A notebook to analyze Amazon Recommendation Review Dataset. Features Calculates distinct user count, dis

isleki 3 Aug 22, 2022
A real-time financial data streaming pipeline and visualization platform using Apache Kafka, Cassandra, and Bokeh.

Realtime Financial Market Data Visualization and Analysis Introduction This repo shows my project about real-time stock data pipeline. All the code is

6 Sep 07, 2022
Making the DAEN information accessible.

The purpose of this repository is to make the information on Australian COVID-19 adverse events accessible. The Therapeutics Goods Administration (TGA) keeps a database of adverse reactions to medica

10 May 10, 2022
Pandas and Dask test helper methods with beautiful error messages.

beavis Pandas and Dask test helper methods with beautiful error messages. test helpers These test helper methods are meant to be used in test suites.

Matthew Powers 18 Nov 28, 2022
Pipetools enables function composition similar to using Unix pipes.

Pipetools Complete documentation pipetools enables function composition similar to using Unix pipes. It allows forward-composition and piping of arbit

186 Dec 29, 2022
Data Analytics: Modeling and Studying data relating to climate change and adoption of electric vehicles

Correlation-Study-Climate-Change-EV-Adoption Data Analytics: Modeling and Studying data relating to climate change and adoption of electric vehicles I

Jonathan Feng 1 Jan 03, 2022
An Indexer that works out-of-the-box when you have less than 100K stored Documents

U100KIndexer An Indexer that works out-of-the-box when you have less than 100K stored Documents. U100K means under 100K. At 100K stored Documents with

Jina AI 7 Mar 15, 2022
Scraping and analysis of leetcode-compensations page.

Leetcode compensations report Scraping and analysis of leetcode-compensations page.

utsav 96 Jan 01, 2023
A lightweight, hub-and-spoke dashboard for multi-account Data Science projects

A lightweight, hub-and-spoke dashboard for cross-account Data Science Projects Introduction Modern Data Science environments often involve many indepe

AWS Samples 3 Oct 30, 2021
Random dataframe and database table generator

Random database/dataframe generator Authored and maintained by Dr. Tirthajyoti Sarkar, Fremont, USA Introduction Often, beginners in SQL or data scien

Tirthajyoti Sarkar 249 Jan 08, 2023
Numerical Analysis toolkit centred around PDEs, for demonstration and understanding purposes not production

Numerics Numerical Analysis toolkit centred around PDEs, for demonstration and understanding purposes not production Use procedure: Initialise a new i

George Whittle 1 Nov 13, 2021
Spectral Analysis in Python

SPECTRUM : Spectral Analysis in Python contributions: Please join https://github.com/cokelaer/spectrum contributors: https://github.com/cokelaer/spect

Thomas Cokelaer 280 Dec 16, 2022
Bamboolib - a GUI for pandas DataFrames

Community repository of bamboolib bamboolib is joining forces with Databricks. For more information, please read our announcement. Please note that th

Tobias Krabel 863 Jan 08, 2023
The micro-framework to create dataframes from functions.

The micro-framework to create dataframes from functions.

Stitch Fix Technology 762 Jan 07, 2023
Pip install minimal-pandas-api-for-polars

Minimal Pandas API for Polars Install From PyPI: pip install minimal-pandas-api-for-polars Example Usage (see tests/test_minimal_pandas_api_for_polars

Austin Ray 6 Oct 16, 2022
Handle, manipulate, and convert data with units in Python

unyt A package for handling numpy arrays with units. Often writing code that deals with data that has units can be confusing. A function might return

The yt project 304 Jan 02, 2023
Python reader for Linked Data in HDF5 files

Linked Data are becoming more popular for user-created metadata in HDF5 files.

The HDF Group 8 May 17, 2022
follow-analyzer helps GitHub users analyze their following and followers relationship

follow-analyzer follow-analyzer helps GitHub users analyze their following and followers relationship by providing a report in html format which conta

Yin-Chiuan Chen 2 May 02, 2022
An experimental project I'm undertaking for the sole purpose of increasing my Python knowledge

5ePy is an experimental project I'm undertaking for the sole purpose of increasing my Python knowledge. #Goals Goal: Create a working, albeit lightwei

Hayden Covington 1 Nov 24, 2021