Submission to Twitter's algorithmic bias bounty challenge

Overview

Twitter Ethics Challenge: Pixel Perfect

Submission to Twitter's algorithmic bias bounty challenge, by Travis Hoppe (@metasemantic).

Abstract

We build off the work presented by Yee et al. and show that a trivial image modification can dramatically change the saliency point of two images. This modification can result in different crops for the same images. Specifically, we find that adding padding to the left of an image can alter the selection point where the Twitter algorithm will crop. At least 16% of all image pairs are exploitable in this way (possibly much larger). The exploit, which can be easily triggered intentionally, happens naturally and is 22% more likely to occur when comparing white women to women of color.

Example

The following images are almost identical, with one small exception. The second image has a 13 pixel padding on the left. This is enough to change which image is cropped!

Rashida Tlaib is cropped

Kyrsten Sinema is cropped

To replicate this, you can use the code provided or the jupyter notebook.

Methods

To ensure a dataset that is 1] representative of gender and ethnicity, 2] publicly available, 3] uniform in framing and pose, and 4] consensual, we use images from the 117th US Congress. Images and demographic data provided by Civil Service USA and can be found at the following locations:

Each congressional representative and senator was put in competition with each other. Similar to the Twitter paper, we placed a black buffer between the images and asked the cropping algorithm for the most salient point using the aspect ratio of the original images (1:1).

The cropping algorithm computes a set of saliency rankings across 140 evenly spaced points along the composite image (1536x512). For this experiment, this is about 40 pixels per point. We evaluate the "winner" for the original composite image, then examine if the winner changes when we add a buffer of fixed size to the left of the image. We used buffers of size [0, 6, 13, 19, 26, 31]. A pair of images is considered "exploitable" if there exists a buffer of some size that selects a different photo from the non-buffered image.

Anecdotally, we found a much larger effect when we applied the attack to buffers of of more sizes than those listed, but computational constraints prevented this full analysis. We also could increase the attack surface by inserting the buffer between the images (but this modified one image independently of the other).  Since the buffer shifted both images by the same amount, it is considered "fair" for attacks of all images in the wild as it's trival to add extra space to any image (see examples in the self-scoring section for more).

For demographics, we split the population into the two categories of gender provided (all members identified as either male or female), and two categories of ethnicity: white and other. "Other", refered to here as people of color, was chosen as a category for statistical power as the various subgroups (African American, Hispanics, pacific islanders, ...), were not large enough to draw meaningful conclusions. Future work should examine this bias using more nuanced subgroups with larger datasets.

Results

We found that out of the image pairs considered, 16.4% of them were exploitable by our method. Furthermore, we found that the attack was disproportionately more likely to occur when comparing white women to women of color. We found an increase of about 22.2% from the baseline (20.04% up from 16.4%) when considering this subgroup (p<<0.001).

Full tables of statistics are provided at the end of the README. Self-pairs were not considered, so the actual number of image pairs was (536^2 - 536), and each of those were evaluated at the 6 offsets. Additionally, we find slight differences considering image A-B vs B-A, so we list them as separate cases in the data tables (but did not find them statistically significant).

Self-score

  • Type of Harm (20 base points)

Unintentional underrepresentation.

  • Damage or impact ((1.4 + 1.2)/2 = 1.3)

We show that along multiple axis of identity (gender and ethnicity) that it is magnified for women of color (x1.4). Being cropped out of an image, or having high variability of being cropped out of an image (UI gaslighting) can have a moderate impact to a person's well-being (x1.2)

  • Affected users (1.2)

We estimate that the number of users that have been seen or exposed to images of multiple people, where one of them is a woman of color is at least one million (x1.2). With 187 million active user each posting or reposting a single target image once a year with 10 views, this under-estimate still gives 5 million views per user per day.

  • Likelihood only graded for unintentional harms (1.3)
  • Exploitability only graded for intentional harms: (not scored)

While this is not an intentional harm, it can be! Code provided can easily duplicate this effect (x1.3 if scored) or it can be done with minimal photo editing. Strangley this algorithm isn't exactly the same as the one live on Twitter now (8/2/21). The live algorithm is worse! It currently chooses to do nothing and instead picks a black square in the middle (Roll Safe meme: can't have bias if we remove the humans).

We note that it is difficult to tell harm has occurred in the wild, as the effect may be unnoticed since the user isn't presented with alternatives. That said, we show that it works on real world images as well in the examples below. Considering that images with multiple people are shown on Twitter daily, this exploit is very likely (1.3).

Here the most salient point is marked by a green dot. The images are only offset by a single width pixel.

This this example, over the span of three pixels there are three different cropping points:

  • Justification: (1.0)

We hope that the reader can see that the current cropping algorithm is brittle and easily exploited. This effect happens naturally with different images and is dependent on unimportant information at the edge of the image. The harm here is subtle, but it is important to note that it isn't uniform across all demographics. If some users are arbitrarily and inconsistently cropped, this creates an experience that their presence (and self!) in a photo is also arbitrary. We score this section at (x1.00) as the methodology is sound but could use a larger dataset, more cropping points, and the effect isn't as harmful as a racially biased crop that was shown in the first paper.

  • Clarity of contribution: (1.5)

This submission is fully documented with workable examples, a reproducible dataset, and evidence of harm both intentional and unintentionally (x1.5). We note that the exploit can be fixed in numerous way at the cost of more computational resources. Instead of a single point, multiple points can be evaluated heuristically (as the original authors suggest). Also, kernel densities can be estimated to provide a smoother representation of the most salient area vs a single point.

  • Final Score: (60.84)

20 x (1.3 + 1.2 + 1.3 + 1.0 + 1.5) = 60.84

Appendix and data tables

We first report results reflected in Yee et. all: gender plays a strong role (towards females), while the role of ethnicity matters, but in a more subtle way. p-values are constructed from a two-sided binomial test using the sample mean as the expected value, significance (when shown), is set at p<0.01 and provided for visual convenience.

            key        n       k       pct         pvalue
0    white_male  2095416  909151  0.433876   0.000000e+00
1    other_male   429336  224617  0.523173  1.305973e-202
2  white_female   602352  382057  0.634275   0.000000e+00
3  other_female   301176  198315  0.658469   0.000000e+00

Reflecting the gender and ethnicity parity in the party structure we see the same result:

           key        n       k       pct  pvalue
0  independent    12816    3807  0.297051     0.0
1   republican  1672488  764219  0.456935     0.0
2     democrat  1742976  946114  0.542815     0.0

Considering the interaction between gender and ethnicity, the largest difference is between white males and females. For non-white males the bias still exists, but is less. n reflects not only each pairwise comparisons but at all levels of offset.

        left_key     right_key       n       k       pct         pvalue    sig
0     white_male  other_female   92214   25963  0.281552   0.000000e+00   True
1     white_male  white_female  184428   56958  0.308836   0.000000e+00   True
2     other_male  other_female   18894    7092  0.375357  2.401844e-287   True
3     other_male  white_female   37788   15129  0.400365   0.000000e+00   True
4     white_male    other_male  131454   54628  0.415567   0.000000e+00   True
5   white_female  other_female   26508   13085  0.493625   2.722065e-05   True
6     other_male    other_male   26532   13336  0.502638   2.081554e-01  False
7     white_male    white_male  639612  322983  0.504967   1.319497e-02  False
8   other_female  other_female   12972    6627  0.510870   3.253872e-01  False
9   white_female  white_female   52452   26799  0.510924   4.365079e-02  False
10  other_female  white_female   26508   14083  0.531274   7.589998e-16   True
11    other_male    white_male  131454   77808  0.591903   0.000000e+00   True
12  white_female    other_male   37788   23337  0.617577   0.000000e+00   True
13  other_female    other_male   18894   12115  0.641209  1.623488e-304   True
14  white_female    white_male  184428  130629  0.708293   0.000000e+00   True
15  other_female    white_male   92214   67669  0.733826   0.000000e+00   True

Next we consider the effects of the exploit. The raw breakdown along demographics show that there is a difference with non-white females and white female from this expected 16.4%. Here, n reflects only the pairwise comparisons:

            key       n      k       pct        pvalue    sig
0  white_female  100392  15912  0.158499  7.780860e-07   True
1    other_male   71556  11551  0.161426  4.103492e-02  False
2    white_male  349236  57507  0.164665  5.122208e-01  False
3  other_female   50196   8882  0.176946  3.039690e-14   True

Finally, we show the main results using both subgroups of ethnicity and gender.

        left_key     right_key       n      k       pct        pvalue    sig
0   white_female    white_male   30738   4503  0.146496  1.549290e-17   True
1     white_male  white_female   30738   4608  0.149912  6.904292e-12   True
2     other_male    other_male    4422    677  0.153098  4.668935e-02  False
3     other_male  white_female    6298    981  0.155764  6.884341e-02  False
4     other_male    white_male   21909   3538  0.161486  2.739183e-01  False
5     white_male    other_male   21909   3545  0.161806  3.338248e-01  False
6   white_female    other_male    6298   1021  0.162115  6.584081e-01  False
7   other_female    white_male   15369   2528  0.164487  9.392602e-01  False
8     white_male  other_female   15369   2571  0.167285  3.113621e-01  False
9     white_male    white_male  106602  18107  0.169856  8.897830e-07   True
10  white_female  white_female    8742   1506  0.172272  4.481319e-02  False
11  other_female    other_male    3149    555  0.176246  7.125701e-02  False
12    other_male  other_female    3149    557  0.176882  5.743075e-02  False
13  other_female  white_female    4418    885  0.200317  2.955497e-10   True
14  white_female  other_female    4418    902  0.204165  3.565989e-12   True
15  other_female  other_female    2162    442  0.204440  9.085229e-07   True

Useful links for the submission:

Owner
Travis Hoppe
Travis Hoppe
Single Red Blood Cell Hydrodynamic Traps Via the Generative Design

Rbc-traps-generative-design - The generative design for single red clood cell hydrodynamic traps using GEFEST framework

Natural Systems Simulation Lab 4 Jun 16, 2022
Parallel Latent Tree-Induction for Faster Sequence Encoding

FastTrees This repository contains the experimental code supporting the FastTrees paper by Bill Pung. Software Requirements Python 3.6, NLTK and PyTor

Bill Pung 4 Mar 29, 2022
A minimalist environment for decision-making in autonomous driving

highway-env A collection of environments for autonomous driving and tactical decision-making tasks An episode of one of the environments available in

Edouard Leurent 1.6k Jan 07, 2023
Metric learning algorithms in Python

metric-learn: Metric Learning in Python metric-learn contains efficient Python implementations of several popular supervised and weakly-supervised met

1.3k Jan 02, 2023
Code repo for EMNLP21 paper "Zero-Shot Information Extraction as a Unified Text-to-Triple Translation"

Zero-Shot Information Extraction as a Unified Text-to-Triple Translation Source code repo for paper Zero-Shot Information Extraction as a Unified Text

cgraywang 88 Dec 31, 2022
Brain tumor detection using Convolution-Neural Network (CNN)

Detect and Classify Brain Tumor using CNN. A system performing detection and classification by using Deep Learning Algorithms using Convolution-Neural Network (CNN).

assia 1 Feb 07, 2022
This is the dataset for testing the robustness of various VO/VIO methods

KAIST VIO dataset This is the dataset for testing the robustness of various VO/VIO methods You can download the whole dataset on KAIST VIO dataset Ind

1 Sep 01, 2022
QAHOI: Query-Based Anchors for Human-Object Interaction Detection (paper)

QAHOI QAHOI: Query-Based Anchors for Human-Object Interaction Detection (paper) Requirements PyTorch = 1.5.1 torchvision = 0.6.1 pip install -r requ

38 Dec 29, 2022
Implementing Graph Convolutional Networks and Information Retrieval Mechanisms using pure Python and NumPy

Implementing Graph Convolutional Networks and Information Retrieval Mechanisms using pure Python and NumPy

Noah Getz 3 Jun 22, 2022
[CVPR 2019 Oral] Multi-Channel Attention Selection GAN with Cascaded Semantic Guidance for Cross-View Image Translation

SelectionGAN for Guided Image-to-Image Translation CVPR Paper | Extended Paper | Guided-I2I-Translation-Papers Citation If you use this code for your

Hao Tang 424 Dec 02, 2022
Distributed Evolutionary Algorithms in Python

DEAP DEAP is a novel evolutionary computation framework for rapid prototyping and testing of ideas. It seeks to make algorithms explicit and data stru

Distributed Evolutionary Algorithms in Python 4.9k Jan 05, 2023
MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images

MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images This repository contains the implementation of our paper MetaAvatar: Learni

sfwang 96 Dec 13, 2022
A general framework for inferring CNNs efficiently. Reduce the inference latency of MobileNet-V3 by 1.3x on an iPhone XS Max without sacrificing accuracy.

GFNet-Pytorch (NeurIPS 2020) This repo contains the official code and pre-trained models for the glance and focus network (GFNet). Glance and Focus: a

Rainforest Wang 169 Oct 28, 2022
Companion code for "Bayesian logistic regression for online recalibration and revision of risk prediction models with performance guarantees"

Companion code for "Bayesian logistic regression for online recalibration and revision of risk prediction models with performance guarantees" Installa

0 Oct 13, 2021
Tensorflow Implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE

SMU A Tensorflow Implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE arXiv https://arxiv.org/abs/211

Fuhang 5 Jan 18, 2022
(Personalized) Page-Rank computation using PyTorch

torch-ppr This package allows calculating page-rank and personalized page-rank via power iteration with PyTorch, which also supports calculation on GP

Max Berrendorf 69 Dec 03, 2022
Official implementation of "StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation" (SIGGRAPH 2021)

StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation This repository contains the official PyTorch implementation of the following

Wonjong Jang 270 Dec 30, 2022
Unofficial PyTorch code for BasicVSR

Dependencies and Installation The code is based on BasicSR, Please install the BasicSR framework first. Pytorch=1.51 Training cd ./code CUDA_VISIBLE_

Long 59 Dec 06, 2022
ViSD4SA, a Vietnamese Span Detection for Aspect-based sentiment analysis dataset

UIT-ViSD4SA PACLIC 35 General Introduction This repository contains the data of the paper: Span Detection for Vietnamese Aspect-Based Sentiment Analys

Nguyễn Thị Thanh Kim 5 Nov 13, 2022
NNR conformation conditional and global probabilities estimation and analysis in peptides or proteins fragments

NNR and global probabilities estimation and analysis in peptides or protein fragments This module calculates global and NNR conformation dependent pro

0 Jul 15, 2021