A Python library for adversarial machine learning focusing on benchmarking adversarial robustness.

Overview

ARES

This repository contains the code for ARES (Adversarial Robustness Evaluation for Safety), a Python library for adversarial machine learning research focusing on benchmarking adversarial robustness on image classification correctly and comprehensively.

We benchmark the adversarial robustness using 15 attacks and 16 defenses under complete threat models, which is described in the following paper

Benchmarking Adversarial Robustness on Image Classification (CVPR 2020, Oral)

Yinpeng Dong, Qi-An Fu, Xiao Yang, Tianyu Pang, Hang Su, Zihao Xiao, and Jun Zhu.

Feature overview:

  • Built on TensorFlow, and support TensorFlow & PyTorch models with the same interface.
  • Support many attacks in various threat models.
  • Provide ready-to-use pre-trained baseline models (8 on ImageNet & 8 on CIFAR10).
  • Provide efficient & easy-to-use tools for benchmarking models.

Citation

If you find ARES useful, you could cite our paper on benchmarking adversarial robustness using all models, all attacks & defenses supported in ARES. We provide a BibTeX entry of this paper below:

@inproceedings{dong2020benchmarking,
  title={Benchmarking Adversarial Robustness on Image Classification},
  author={Dong, Yinpeng and Fu, Qi-An and Yang, Xiao and Pang, Tianyu and Su, Hang and Xiao, Zihao and Zhu, Jun},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
  pages={321--331},
  year={2020}
}

Installation

Since ARES is still under development, please clone the repository and install the package:

git clone https://github.com/thu-ml/ares
cd ares/
pip install -e .

The requirements.txt includes its dependencies, you might want to change PyTorch's version as well as TensorFlow 1's version. TensorFlow 1.13 or later should work fine.

As for python version, Python 3.5 or later should work fine.

The Boundary attack and the Evolutionary attack require mpi4py and a working MPI with enough localhost slots. For example, you could set the OMPI_MCA_rmaps_base_oversubscribe environment variable to yes for OpenMPI.

Download Datasets & Model Checkpoints

By default, ARES would save datasets and model checkpoints under the ~/.ares directory. You could override it by setting the ARES_RES_DIR environment variable to an alternative location.

We support 2 datasets: CIFAR-10 and ImageNet.

To download the CIFAR-10 dataset, please run:

python3 ares/dataset/cifar10.py

To download the ImageNet dataset, please run:

python3 ares/dataset/imagenet.py

for instructions.

ARES includes third party models' code in the third_party/ directory as git submodules. Before you use these models, you need to initialize these submodules:

git submodule init
git submodule update --depth 1

The example/cifar10 directory and example/imagenet directories include wrappers for these models. Run the model's .py file to download its checkpoint or view instructions for downloading. For example, if you want to download the ResNet56 model's checkpoint, please run:

python3 example/cifar10/resnet56.py

Documentation

We provide API docs as well as tutorials at https://thu-ml-ares.rtfd.io/.

Quick Examples

ARES provides command line interface to run benchmarks. For example, to run distortion benchmark on ResNet56 model for CIFAR-10 dataset using CLI:

python3 -m ares.benchmark.distortion_cli --method mim --dataset cifar10 --offset 0 --count 1000 --output mim.npy example/cifar10/resnet56.py --distortion 0.1 --goal ut --distance-metric l_inf --batch-size 100 --iteration 10 --decay-factor 1.0 --logger

This command would find the minimal adversarial distortion achieved using the MIM attack with decay factor of 1.0 on the example/cifar10/resnet56.py model with L∞ distance and save the result to mim.npy.

For more examples and usages (e.g. how to define new models), please browse our documentation website mentioned before.

Acknowledgement

This work was supported by the National Key Research and Development Program of China, Beijing Academy of Artificial Intelligence (BAAI), a grant from Tsinghua Institute for Guo Qiang.

Owner
Tsinghua Machine Learning Group
Tsinghua Machine Learning Group
Anti-Adversarially Manipulated Attributions for Weakly and Semi-Supervised Semantic Segmentation (CVPR 2021)

Anti-Adversarially Manipulated Attributions for Weakly and Semi-Supervised Semantic Segmentation Input Image Initial CAM Successive Maps with adversar

Jungbeom Lee 110 Dec 07, 2022
Generating retro pixel game characters with Generative Adversarial Networks. Dataset "TinyHero" included.

pixel_character_generator Generating retro pixel game characters with Generative Adversarial Networks. Dataset "TinyHero" included. Dataset TinyHero D

Agnieszka Mikołajczyk 88 Nov 17, 2022
A repo for Causal Imitation Learning under Temporally Correlated Noise

CausIL A repo for Causal Imitation Learning under Temporally Correlated Noise. Running Experiments To re-train an expert, run: python experts/train_ex

Gokul Swamy 5 Nov 01, 2022
Open-AI's DALL-E for large scale training in mesh-tensorflow.

DALL-E in Mesh-Tensorflow [WIP] Open-AI's DALL-E in Mesh-Tensorflow. If this is similarly efficient to GPT-Neo, this repo should be able to train mode

EleutherAI 432 Dec 16, 2022
Pytorch Implementation of "Desigining Network Design Spaces", Radosavovic et al. CVPR 2020.

RegNet Pytorch Implementation of "Desigining Network Design Spaces", Radosavovic et al. CVPR 2020. Paper | Official Implementation RegNet offer a very

Vishal R 2 Feb 11, 2022
Data visualization app for H&M competition in kaggle

handm_data_visualize_app Data visualization app by streamlit for H&M competition in kaggle. competition page: https://www.kaggle.com/competitions/h-an

Kyohei Uto 12 Apr 30, 2022
Unbalanced Feature Transport for Exemplar-based Image Translation (CVPR 2021)

UNITE and UNITE+ Unbalanced Feature Transport for Exemplar-based Image Translation (CVPR 2021) Unbalanced Intrinsic Feature Transport for Exemplar-bas

Fangneng Zhan 183 Nov 09, 2022
[SIGGRAPH 2020] Attribute2Font: Creating Fonts You Want From Attributes

Attr2Font Introduction This is the official PyTorch implementation of the Attribute2Font: Creating Fonts You Want From Attributes. Paper: arXiv | Rese

Yue Gao 200 Dec 15, 2022
DC540 hacking challenge 0x00005a.

dc540-0x00005a DC540 hacking challenge 0x00005a. PROMOTIONAL VIDEO - WATCH NOW HERE ON YOUTUBE CRITICAL PART 5A VIDEO - WATCH NOW HERE ON YOUTUBE Prio

Kevin Thomas 3 May 09, 2022
Pytorch Performace Tuning, WandB, AMP, Multi-GPU, TensorRT, Triton

Plant Pathology 2020 FGVC7 Introduction A deep learning model pipeline for training, experimentaiton and deployment for the Kaggle Competition, Plant

Bharat Giddwani 0 Feb 25, 2022
(CVPR 2022) Energy-based Latent Aligner for Incremental Learning

Energy-based Latent Aligner for Incremental Learning Accepted to CVPR 2022 We illustrate an Incremental Learning model trained on a continuum of tasks

Joseph K J 37 Jan 03, 2023
Multi-Modal Machine Learning toolkit based on PyTorch.

简体中文 | English TorchMM 简介 多模态学习工具包 TorchMM 旨在于提供模态联合学习和跨模态学习算法模型库,为处理图片文本等多模态数据提供高效的解决方案,助力多模态学习应用落地。 近期更新 2022.1.5 发布 TorchMM 初始版本 v1.0 特性 丰富的任务场景:工具

njustkmg 1 Jan 05, 2022
Yolov5+SlowFast: Realtime Action Detection Based on PytorchVideo

Yolov5+SlowFast: Realtime Action Detection A realtime action detection frame work based on PytorchVideo. Here are some details about our modification:

WuFan 181 Dec 30, 2022
Revisiting Discriminator in GAN Compression: A Generator-discriminator Cooperative Compression Scheme (NeurIPS2021)

Revisiting Discriminator in GAN Compression: A Generator-discriminator Cooperative Compression Scheme (NeurIPS2021) Overview Prerequisites Linux Pytho

Shaojie Li 34 Mar 31, 2022
Official implementation of the paper Image Generators with Conditionally-Independent Pixel Synthesis https://arxiv.org/abs/2011.13775

CIPS -- Official Pytorch Implementation of the paper Image Generators with Conditionally-Independent Pixel Synthesis Requirements pip install -r requi

Multimodal Lab @ Samsung AI Center Moscow 201 Dec 21, 2022
[v1 (ISBI'21) + v2] MedMNIST: A Large-Scale Lightweight Benchmark for 2D and 3D Biomedical Image Classification

MedMNIST Project (Website) | Dataset (Zenodo) | Paper (arXiv) | MedMNIST v1 (ISBI'21) Jiancheng Yang, Rui Shi, Donglai Wei, Zequan Liu, Lin Zhao, Bili

683 Dec 28, 2022
Codes for “A Deeply Supervised Attention Metric-Based Network and an Open Aerial Image Dataset for Remote Sensing Change Detection”

DSAMNet The pytorch implementation for "A Deeply-supervised Attention Metric-based Network and an Open Aerial Image Dataset for Remote Sensing Change

Mengxi Liu 41 Dec 14, 2022
Repository for RNNs using TensorFlow and Keras - LSTM and GRU Implementation from Scratch - Simple Classification and Regression Problem using RNNs

RNN 01- RNN_Classification Simple RNN training for classification task of 3 signal: Sine, Square, Triangle. 02- RNN_Regression Simple RNN training for

Nahid Ebrahimian 13 Dec 13, 2022
Pointer networks Tensorflow2

Pointer networks Tensorflow2 原文:https://arxiv.org/abs/1506.03134 仅供参考与学习,内含代码备注 环境 tensorflow==2.6.0 tqdm matplotlib numpy 《pointer networks》阅读笔记 应用场景

HUANG HAO 7 Oct 27, 2022
This is a re-implementation of TransGAN: Two Pure Transformers Can Make One Strong GAN (CVPR 2021) in PyTorch.

TransGAN: Two Transformers Can Make One Strong GAN [YouTube Video] Paper Authors: Yifan Jiang, Shiyu Chang, Zhangyang Wang CVPR 2021 This is re-implem

Ahmet Sarigun 79 Jan 05, 2023