A probabilistic programming library for Bayesian deep learning, generative models, based on Tensorflow

Overview

Build Status Doc Status License Join the chat at https://gitter.im/thu-ml/zhusuan

ZhuSuan is a Python probabilistic programming library for Bayesian deep learning, which conjoins the complimentary advantages of Bayesian methods and deep learning. ZhuSuan is built upon TensorFlow. Unlike existing deep learning libraries, which are mainly designed for deterministic neural networks and supervised tasks, ZhuSuan provides deep learning style primitives and algorithms for building probabilistic models and applying Bayesian inference. The supported inference algorithms include:

  • Variational Inference (VI) with programmable variational posteriors, various objectives and advanced gradient estimators (SGVB, REINFORCE, VIMCO, etc.).

  • Importance Sampling (IS) for learning and evaluating models, with programmable proposals.

  • Hamiltonian Monte Carlo (HMC) with parallel chains, and optional automatic parameter tuning.

  • Stochastic Gradient Markov Chain Monte Carlo (SGMCMC): SGLD, PSGLD, SGHMC, and SGNHT.

Installation

ZhuSuan is still under development. Before the first stable release (1.0), please clone the repository and run

pip install .

in the main directory. This will install ZhuSuan and its dependencies automatically. ZhuSuan also requires TensorFlow 1.13.0 or later. Because users should choose whether to install the cpu or gpu version of TensorFlow, we do not include it in the dependencies. See Installing TensorFlow.

If you are developing ZhuSuan, you may want to install in an "editable" or "develop" mode. Please refer to the Contributing section below.

Documentation

Examples

We provide examples on traditional hierarchical Bayesian models and recent deep generative models.

To run the provided examples, you may need extra dependencies to be installed. This can be done by

pip install ".[examples]"
  • Gaussian: HMC
  • Toy 2D Intractable Posterior: SGVB
  • Bayesian Neural Networks: SGVB, SGMCMC
  • Variational Autoencoder (VAE): SGVB, IWAE
  • Convolutional VAE: SGVB
  • Semi-supervised VAE (Kingma, 2014): SGVB, Adaptive IS
  • Deep Sigmoid Belief Networks Adaptive IS, VIMCO
  • Logistic Normal Topic Model: HMC
  • Probabilistic Matrix Factorization: HMC
  • Sparse Variational Gaussian Process: SGVB

Citing ZhuSuan

If you find ZhuSuan useful, please cite it in your publications. We provide a BibTeX entry of the ZhuSuan white paper below.

@ARTICLE{zhusuan2017,
    title={Zhu{S}uan: A Library for {B}ayesian Deep Learning},
    author={Shi, Jiaxin and Chen, Jianfei. and Zhu, Jun and Sun, Shengyang
    and Luo, Yucen and Gu, Yihong and Zhou, Yuhao},
    journal={arXiv preprint arXiv:1709.05870},
    year=2017,
}

Contributing

We always welcome contributions to help make ZhuSuan better. If you would like to contribute, please check out the guidelines here.

Owner
Tsinghua Machine Learning Group
Tsinghua Machine Learning Group
Single machine, multiple cards training; mix-precision training; DALI data loader.

Template Script Category Description Category script comparison script train.py, loader.py for single-machine-multiple-cards training train_DP.py, tra

2 Jun 27, 2022
Convert monolithic Jupyter notebooks into Ploomber pipelines.

Soorgeon Join our community | Newsletter | Contact us | Blog | Website | YouTube Convert monolithic Jupyter notebooks into Ploomber pipelines. soorgeo

Ploomber 65 Dec 16, 2022
Hue Editor: Open source SQL Query Assistant for Databases/Warehouses

Hue Editor: Open source SQL Query Assistant for Databases/Warehouses

Cloudera 759 Jan 07, 2023
Making the DAEN information accessible.

The purpose of this repository is to make the information on Australian COVID-19 adverse events accessible. The Therapeutics Goods Administration (TGA) keeps a database of adverse reactions to medica

10 May 10, 2022
Working Time Statistics of working hours and working conditions by industry and company

Working Time Statistics of working hours and working conditions by industry and company

Feng Ruohang 88 Nov 04, 2022
Stochastic Gradient Trees implementation in Python

Stochastic Gradient Trees - Python Stochastic Gradient Trees1 by Henry Gouk, Bernhard Pfahringer, and Eibe Frank implementation in Python. Based on th

John Koumentis 2 Nov 18, 2022
Get mutations in cluster by querying from LAPIS API

Cluster Mutation Script Get mutations appearing within user-defined clusters. Usage Clusters are defined in the clusters dict in main.py: clusters = {

neherlab 1 Oct 22, 2021
A stock analysis app with streamlit

StockAnalysisApp A stock analysis app with streamlit. You select the ticker of the stock and the app makes a series of analysis by using the price cha

Antonio Catalano 50 Nov 27, 2022
Analysis scripts for QG equations

qg-edgeofchaos Analysis scripts for QG equations FIle/Folder Structure eigensolvers.py - Spectral and finite-difference solvers for Rossby wave eigenf

Norman Cao 2 Sep 27, 2022
A notebook to analyze Amazon Recommendation Review Dataset.

Amazon Recommendation Review Dataset Analyzer A notebook to analyze Amazon Recommendation Review Dataset. Features Calculates distinct user count, dis

isleki 3 Aug 22, 2022
Evidence enables analysts to deliver a polished business intelligence system using SQL and markdown.

Evidence enables analysts to deliver a polished business intelligence system using SQL and markdown

915 Dec 26, 2022
Ejercicios Panda usando Pandas

Readme Below we add configuration details to locally test your application To co

1 Jan 22, 2022
In this project, ETL pipeline is build on data warehouse hosted on AWS Redshift.

ETL Pipeline for AWS Project Description In this project, ETL pipeline is build on data warehouse hosted on AWS Redshift. The data is loaded from S3 t

Mobeen Ahmed 1 Nov 01, 2021
bigdata_analyse 大数据分析项目

bigdata_analyse 大数据分析项目 wish 采用不同的技术栈,通过对不同行业的数据集进行分析,期望达到以下目标: 了解不同领域的业务分析指标 深化数据处理、数据分析、数据可视化能力 增加大数据批处理、流处理的实践经验 增加数据挖掘的实践经验

Way 2.4k Dec 30, 2022
This is a tool for speculation of ancestral allel, calculation of sfs and drawing its bar plot.

superSFS This is a tool for speculation of ancestral allel, calculation of sfs and drawing its bar plot. It is easy-to-use and runing fast. What you s

3 Dec 16, 2022
Extract Thailand COVID-19 Cluster data from daily briefing pdf.

Thailand COVID-19 Cluster Data Extraction About Extract Clusters from Thailand Daily COVID-19 briefing PDF Download latest data Here. Data will be upd

Noppakorn Jiravaranun 5 Sep 27, 2021
The official repository for ROOT: analyzing, storing and visualizing big data, scientifically

About The ROOT system provides a set of OO frameworks with all the functionality needed to handle and analyze large amounts of data in a very efficien

ROOT 2k Dec 29, 2022
follow-analyzer helps GitHub users analyze their following and followers relationship

follow-analyzer follow-analyzer helps GitHub users analyze their following and followers relationship by providing a report in html format which conta

Yin-Chiuan Chen 2 May 02, 2022
Data pipelines built with polars

valves Warning: the project is very much work in progress. Valves is a collection of functions for your data .pipe()-lines. This project aimes to host

14 Jan 03, 2023
Python scripts aim to use a Random Forest machine learning algorithm to predict the water affinity of Metal-Organic Frameworks

The following Python scripts aim to use a Random Forest machine learning algorithm to predict the water affinity of Metal-Organic Frameworks (MOFs). The training set is extracted from the Cambridge S

1 Jan 09, 2022