JittorVis - Visual understanding of deep learning models

Overview

JittorVis: Visual understanding of deep learning model

Image of JittorVis

JittorVis is an open-source library for understanding the inner workings of Jittor models by visually illustrating their dataflow graphs.

Deep neural networks have achieved breakthrough performance in many tasks such as image recognition, detection, segmentation, generation, etc. However, the development of high-quality deep models typically relies on a substantial amount of trial and error, as there is still no clear understanding of when and why a deep model works. Also, the complexity of the deep neural network architecture brings difficulties to debugging and modifying the model. JittorVis facilitates the visualization of the dataflow graph of the deep neural network at different levels, which brings users a deeper understanding of the dataflow graph from the whole to the part to debug and modify the model more effectively.

JittorVis provides the visualization and tooling needed for machine learning experimentation:

  • Displaying the hierarchical structure of the model dataflow graph
  • Visualizing the dataflow graph at different levels (ops and layers)
  • Profiling Jittor programs

Features to be supported in the future:

  • Tracking and visualizing metrics such as loss and accuracy
  • Viewing line charts of weights, biases, or other tensors as they change over time
  • And much more

Related Links:

Installation

JittorVis need python version >= 3.7.

pip install jittorvis
or
pip3 install jittorvis

Usage

There are several ways to use JittorVis.

  1. Visualizing a Jittor model directly.
import jittor as jt
from jittor import Module
from jittor import nn
import numpy as np

class Model(Module):
    def __init__(self):
        self.layer1 = nn.Linear(1, 10)
        self.relu = nn.Relu() 
        self.layer2 = nn.Linear(10, 1)
    def execute (self,x) :
        x = self.layer1(x)
        x = self.relu(x)
        x = self.layer2(x)
        return x

model = Model()

from jittorvis import server
input = jt.float32(np.random.rand(10, 1))
server.visualize(input, model, host = '0.0.0.0')
# JittorVis start.
# server.stop()
# JittorVis stop.

Then open the link 'http://localhost:5005/static/index.html' in your browser.

  1. Visualizing an exported Jittor computational graph (an example graph can be downloaded here).
from jittorvis import server
server.run('test.pkl', host='0.0.0.0', port=5005)
# JittorVis start.
# server.stop()
# JittorVis stop.
  1. Visualizing an exported Jittor computational graph with command line interface.
jittorvis --data_path test.pkl --host='0.0.0.0' --port=5005

Visualization

JittorVis contains three main views: statistics view, navigation view, and graph structure view.

  1. Statistics view:

    The statistics view provides statistics information for the deep neural network, such as loss and accuracy.

  2. Navigation view:

    The navigation view visualizes the hierarchical structure of a Jittor model to facilitate the exploration of the model. Each tree node represents a computational node in the dataflow graph, and each leaf node represents a basic operation in the graph. Users can click one intermediate node to selected its computational nodes and turn to the graph structure view to explore their graph structure.

Drawing

  1. Graph structure view:

    The graph structure view displays the graph structure of a Jittor graph. In the graph structure view, each rectangle represents a computational node, and each link represents dataflows among computational nodes. The graph structure view has the following interactions:

    • Drag to pan
    • Scroll to zoom in and out
    • Click one computational node to explore its feature map
    • Click the top-right plus button of one computational node to explore its children
    • Click the top-right button “←” to return to the previous level of the graph
    • Right-click one computational node to explore its detailed information

Drawing

Citation

Towards Better Analysis of Deep Convolutional Neural Networks

@article {
    liu2017convolutional,
    author={Liu, Mengchen and Shi, Jiaxin and Li, Zhen and Li, Chongxuan and Zhu, Jun and Liu, Shixia},
    journal={IEEE Transactions on Visualization and Computer Graphics},
    title={Towards Better Analysis of Deep Convolutional Neural Networks},
    year={2017},
    volume={23},
    number={1},
    pages={91-100}
}

Analyzing the Training Processes of Deep Generative Models

@article {
    liu2018generative,
    author={Liu, Mengchen and Shi, Jiaxin and Cao, Kelei and Zhu, Jun and Liu, Shixia},
    journal={IEEE Transactions on Visualization and Computer Graphics},
    title={Analyzing the Training Processes of Deep Generative Models},
    year={2018},
    volume={24},
    number={1},
    pages={77-87}
}

Analyzing the Noise Robustness of Deep Neural Networks

@article {
    cao2021robustness,
    author={Cao, Kelei and Liu, Mengchen and Su, Hang and Wu, Jing and Zhu, Jun and Liu, Shixia},
    journal={IEEE Transactions on Visualization and Computer Graphics},
    title={Analyzing the Noise Robustness of Deep Neural Networks},
    year={2021},
    volume={27},
    number={7},
    pages={3289-3304}
}

The Team

JittorVis is currently maintained by the THUVIS Group. If you are also interested in JittorVis and want to improve it, Please join us!

License

JittorVis is Apache 2.0 licensed, as found in the LICENSE.txt file.

Owner
thu-vis
Tsinghua Visual Analytics Group
thu-vis
The InterScript dataset contains interactive user feedback on scripts generated by a T5-XXL model.

Interscript The Interscript dataset contains interactive user feedback on a T5-11B model generated scripts. Dataset data.json contains the data in an

AI2 8 Dec 01, 2022
CARL provides highly configurable contextual extensions to several well-known RL environments.

CARL (context adaptive RL) provides highly configurable contextual extensions to several well-known RL environments.

AutoML-Freiburg-Hannover 51 Dec 28, 2022
PPLNN is a Primitive Library for Neural Network is a high-performance deep-learning inference engine for efficient AI inferencing

PPLNN is a Primitive Library for Neural Network is a high-performance deep-learning inference engine for efficient AI inferencing

943 Jan 07, 2023
Self-Supervised Learning

Self-Supervised Learning Features self_supervised offers features like modular framework support for multi-gpu training using PyTorch Lightning easy t

Robin 1 Dec 14, 2021
Resources for our AAAI 2022 paper: "LOREN: Logic-Regularized Reasoning for Interpretable Fact Verification".

LOREN Resources for our AAAI 2022 paper (pre-print): "LOREN: Logic-Regularized Reasoning for Interpretable Fact Verification". DEMO System Check out o

Jiangjie Chen 37 Dec 27, 2022
A very tiny, very simple, and very secure file encryption tool.

Picocrypt is a very tiny (hence "Pico"), very simple, yet very secure file encryption tool. It uses the modern ChaCha20-Poly1305 cipher suite as well

Evan Su 1k Dec 30, 2022
Modeling Temporal Concept Receptive Field Dynamically for Untrimmed Video Analysis

Modeling Temporal Concept Receptive Field Dynamically for Untrimmed Video Analysis This is a PyTorch implementation of the model described in our pape

qzhb 6 Jul 08, 2021
Solving reinforcement learning tasks which require language and vision

Multimodal Reinforcement Learning JAX implementations of the following multimodal reinforcement learning approaches. Dual-coding Episodic Memory from

Henry Prior 31 Feb 26, 2022
Pmapper is a super-resolution and deconvolution toolkit for python 3.6+

pmapper pmapper is a super-resolution and deconvolution toolkit for python 3.6+. PMAP stands for Poisson Maximum A-Posteriori, a highly flexible and a

NASA Jet Propulsion Laboratory 8 Nov 06, 2022
Skipgram Negative Sampling in PyTorch

PyTorch SGNS Word2Vec's SkipGramNegativeSampling in Python. Yet another but quite general negative sampling loss implemented in PyTorch. It can be use

Jamie J. Seol 287 Dec 14, 2022
Character Grounding and Re-Identification in Story of Videos and Text Descriptions

Character in Story Identification Network (CiSIN) This project hosts the code for our paper. Youngjae Yu, Jongseok Kim, Heeseung Yun, Jiwan Chung and

8 Dec 09, 2022
GuideDog is an AI/ML-based mobile app designed to assist the lives of the visually impaired, 100% voice-controlled

Guidedog Authors: Kyuhee Jo, Steven Gunarso, Jacky Wang, Raghav Sharma GuideDog is an AI/ML-based mobile app designed to assist the lives of the visua

Kyuhee Jo 5 Nov 24, 2021
Code for the AI lab course 2021/2022 of the University of Verona

AI-Lab Code for the AI lab course 2021/2022 of the University of Verona Set-Up the environment for the curse Download Anaconda for your System. Instal

Davide Corsi 5 Oct 19, 2022
Unofficial implementation of "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" (https://arxiv.org/abs/2103.14030)

Swin-Transformer-Tensorflow A direct translation of the official PyTorch implementation of "Swin Transformer: Hierarchical Vision Transformer using Sh

52 Dec 29, 2022
Solve a Rubiks Cube using Python Opencv and Kociemba module

Rubiks_Cube_Solver Solve a Rubiks Cube using Python Opencv and Kociemba module Main Steps Get the countours of the cube check whether there are tota

Adarsh Badagala 176 Jan 01, 2023
a minimal terminal with python 😎😉

Meterm a terminal with python 😎 How to use Clone Project: $ git clone https://github.com/motahharm/meterm.git Run: in Terminal: meterm.exe Or pip ins

Motahhar.Mokfi 5 Jan 28, 2022
Computer Vision Script to recognize first person motion, developed as final project for the course "Machine Learning and Deep Learning"

Overview of The Code BaseColab/MLDL_FPAR.pdf: it contains the full explanation of our work Base Colab: it contains the base colab used to perform all

Simone Papicchio 4 Jul 16, 2022
3D Multi-Person Pose Estimation by Integrating Top-Down and Bottom-Up Networks

3D Multi-Person Pose Estimation by Integrating Top-Down and Bottom-Up Networks Introduction This repository contains the code and models for the follo

124 Jan 06, 2023
Code from the paper "High-Performance Brain-to-Text Communication via Handwriting"

High-Performance Brain-to-Text Communication via Handwriting Overview This repo is associated with this manuscript, preprint and dataset. The code can

Francis R. Willett 306 Jan 03, 2023
C3DPO - Canonical 3D Pose Networks for Non-rigid Structure From Motion.

C3DPO: Canonical 3D Pose Networks for Non-Rigid Structure From Motion By: David Novotny, Nikhila Ravi, Benjamin Graham, Natalia Neverova, Andrea Vedal

Meta Research 309 Dec 16, 2022