A Confidence-based Iterative Solver of Depths and Surface Normals for Deep Multi-view Stereo

Overview

idn-solver

Paper | Project Page

This repository contains the code release of our ICCV 2021 paper:

A Confidence-based Iterative Solver of Depths and Surface Normals for Deep Multi-view Stereo

Wang Zhao*, Shaohui Liu*, Yi Wei, Hengkai Guo, Yong-Jin Liu

Installation

We recommend to use conda to setup a specified environment. Run

conda env create -f environment.yml

Test on a sequence

First download the pretrained model from here and put it under ./pretrain/ folder.

Prepare the sequence data with color images, camera poses (4x4 cam2world transformation) and intrinsics. The sequence data structure should be like:

sequence_name
  | color
      | 00000.jpg
  | pose
      | 00000.txt
  | K.txt

Run the following command to get the outputs:

python infer_folder.py --seq_dir /path/to/the/sequence/data --output_dir /path/to/save/outputs --config ./configs/test_folder.yaml

Tune the "reference gap" parameter to make sure there are sufficient overlaps and camera translations within an image pair. For ScanNet-like sequence, we recommend to use reference_gap of 20.

Test on ScanNet

Prepare ScanNet test split data

Download the ScanNet test split data from the official site and pre-process the data using:

python ./data/preprocess.py --data_dir /path/to/scannet/test/split/ --output_dir /path/to/save/pre-processed/scannet/test/data

This includes 1. resize the color images to 480x640 resolution 2. sample the data with interval of 20

Run evaluation

python eval_scannet.py --data_dir /path/to/processed/scannet/test/split/ --config ./configs/test_scannet.yaml

Train

Prepare ScanNet training data

We use the pre-processed ScanNet data from NAS, you could download the data using this link. The data structure is like:

scannet
  | scannet_nas
    | train
      | scene0000_00
          | color
            | 0000.jpg
          | pose
            | 0000.txt
          | depth
            | 0000.npy
          | intrinsic
          | normal
            | 0000_normal.npy
    | val
  | scans_test_sample (preprocessed ScanNet test split)

Run training

Modify the "dataset_path" variable with yours in the config yaml.

The network is trained with a two-stage strategy. The whole training process takes ~6 days with 4 Nvidia V100 GPUs.

python train.py ./configs/scannet_stage1.yaml
python train.py ./configs/scannet_stage2.yaml

Citation

If you find our work useful in your research, please consider citing:

@InProceedings{Zhao_2021_ICCV,
    author    = {Zhao, Wang and Liu, Shaohui and Wei, Yi and Guo, Hengkai and Liu, Yong-Jin},
    title     = {A Confidence-Based Iterative Solver of Depths and Surface Normals for Deep Multi-View Stereo},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2021},
    pages     = {6168-6177}
}

Acknowledgement

This project heavily relies codes from NAS and we thank the authors for releasing their code.

We also thank Xiaoxiao Long for kindly helping with ScanNet evaluations.

Owner
zhaowang
Hungry and Humble
zhaowang
[ACL 2022] LinkBERT: A Knowledgeable Language Model 😎 Pretrained with Document Links

LinkBERT: A Knowledgeable Language Model Pretrained with Document Links This repo provides the model, code & data of our paper: LinkBERT: Pretraining

Michihiro Yasunaga 264 Jan 01, 2023
Merlion: A Machine Learning Framework for Time Series Intelligence

Merlion: A Machine Learning Library for Time Series Table of Contents Introduction Installation Documentation Getting Started Anomaly Detection Foreca

Salesforce 2.8k Dec 30, 2022
An end-to-end framework for mixed-integer optimization with data-driven learned constraints.

OptiCL OptiCL is an end-to-end framework for mixed-integer optimization (MIO) with data-driven learned constraints. We address a problem setting in wh

Holly Wiberg 57 Dec 26, 2022
This repository contains an overview of important follow-up works based on the original Vision Transformer (ViT) by Google.

This repository contains an overview of important follow-up works based on the original Vision Transformer (ViT) by Google.

75 Dec 02, 2022
NDE: Climate Modeling with Neural Diffusion Equation, ICDM'21

Climate Modeling with Neural Diffusion Equation Introduction This is the repository of our accepted ICDM 2021 paper "Climate Modeling with Neural Diff

Jeehyun Hwang 5 Dec 18, 2022
Protect against subdomain takeover

domain-protect scans Amazon Route53 across an AWS Organization for domain records vulnerable to takeover deploy to security audit account scan your en

OVO Technology 0 Nov 17, 2022
An efficient toolkit for Face Stylization based on the paper "AgileGAN: Stylizing Portraits by Inversion-Consistent Transfer Learning"

MMGEN-FaceStylor English | 简体中文 Introduction This repo is an efficient toolkit for Face Stylization based on the paper "AgileGAN: Stylizing Portraits

OpenMMLab 182 Dec 27, 2022
Global Pooling, More than Meets the Eye: Position Information is Encoded Channel-Wise in CNNs, ICCV 2021

Global Pooling, More than Meets the Eye: Position Information is Encoded Channel-Wise in CNNs, ICCV 2021 Global Pooling, More than Meets the Eye: Posi

Md Amirul Islam 32 Apr 24, 2022
Advantage Actor Critic (A2C): jax + flax implementation

Advantage Actor Critic (A2C): jax + flax implementation Current version supports only environments with continious action spaces and was tested on muj

Andrey 3 Jan 23, 2022
SpecAugmentPyTorch - A Pytorch (support batch and channel) implementation of GoogleBrain's SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition

SpecAugment An implementation of SpecAugment for Pytorch How to use Install pytorch, version=1.9.0 (new feature (torch.Tensor.take_along_dim) is used

IMLHF 3 Oct 11, 2022
Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them"

ood-text-emnlp Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them" Files fine_tune.py is used to finetune the GPT-2 mo

Udit Arora 19 Oct 28, 2022
Clustering with variational Bayes and population Monte Carlo

pypmc pypmc is a python package focusing on adaptive importance sampling. It can be used for integration and sampling from a user-defined target densi

45 Feb 06, 2022
TorchFlare is a simple, beginner-friendly, and easy-to-use PyTorch Framework train your models effortlessly.

TorchFlare TorchFlare is a simple, beginner-friendly and an easy-to-use PyTorch Framework train your models without much effort. It provides an almost

Atharva Phatak 85 Dec 26, 2022
Code release for DS-NeRF (Depth-supervised Neural Radiance Fields)

Depth-supervised NeRF: Fewer Views and Faster Training for Free Project | Paper | YouTube Pytorch implementation of our method for learning neural rad

524 Jan 08, 2023
CN24 is a complete semantic segmentation framework using fully convolutional networks

Build status: master (production branch): develop (development branch): Welcome to the CN24 GitHub repository! CN24 is a complete semantic segmentatio

Computer Vision Group Jena 123 Jul 14, 2022
Code for CVPR2021 paper "Learning Salient Boundary Feature for Anchor-free Temporal Action Localization"

AFSD: Learning Salient Boundary Feature for Anchor-free Temporal Action Localization This is an official implementation in PyTorch of AFSD. Our paper

Tencent YouTu Research 146 Dec 24, 2022
A Python framework for conversational search

Chatty Goose Multi-stage Conversational Passage Retrieval: An Approach to Fusing Term Importance Estimation and Neural Query Rewriting Installation Ma

Castorini 36 Oct 23, 2022
Inferred Model-based Fuzzer

IMF: Inferred Model-based Fuzzer IMF is a kernel API fuzzer that leverages an automated API model inferrence techinque proposed in our paper at CCS. I

SoftSec Lab 104 Sep 28, 2022
Sentinel-1 vessel detection model used in the xView3 challenge

sar_vessel_detect Code for the AI2 Skylight team's submission in the xView3 competition (https://iuu.xview.us) for vessel detection in Sentinel-1 SAR

AI2 6 Sep 10, 2022