Turning pixels into virtual points for multimodal 3D object detection.

Related tags

Deep LearningMVP
Overview

Multimodal Virtual Point 3D Detection

Turning pixels into virtual points for multimodal 3D object detection.

Multimodal Virtual Point 3D Detection,
Tianwei Yin, Xingyi Zhou, Philipp Krähenbühl,
arXiv technical report (arXiv 2111.06881 )

@article{yin2021multimodal,
  title={Multimodal Virtual Point 3D Detection},
  author={Yin, Tianwei and Zhou, Xingyi and Kr{\"a}henb{\"u}hl, Philipp},
  journal={NeurIPS},
  year={2021},
}

Contact

Any questions or suggestions are welcome!

Tianwei Yin [email protected] Xingyi Zhou [email protected]

Abstract

Lidar-based sensing drives current autonomous vehicles. Despite rapid progress, current Lidar sensors still lag two decades behind traditional color cameras in terms of resolution and cost. For autonomous driving, this means that large objects close to the sensors are easily visible, but far-away or small objects comprise only one measurement or two. This is an issue, especially when these objects turn out to be driving hazards. On the other hand, these same objects are clearly visible in onboard RGB sensors. In this work, we present an approach to seamlessly fuse RGB sensors into Lidar-based 3D recognition. Our approach takes a set of 2D detections to generate dense 3D virtual points to augment an otherwise sparse 3D point-cloud. These virtual points naturally integrate into any standard Lidar-based 3D detectors along with regular Lidar measurements. The resulting multi-modal detector is simple and effective. Experimental results on the large-scale nuScenes dataset show that our framework improves a strong CenterPoint baseline by a significant 6.6 mAP, and outperforms competing fusion approaches.

Main results

3D detection on nuScenes validation set

MAP ↑ NDS ↑
CenterPoint-Voxel 59.5 66.7
CenterPoint-Voxel + MVP 66.0 69.9
CenterPoint-Pillar 52.4 61.5
CenterPoint-Voxel + MVP 62.8 66.2

3D detection on nuScenes test set

MAP ↑ NDS ↑ PKL ↓
MVP 66.4 70.5 0.603

Use MVP

Installation

Please install CenterPoint and CenterNet2. Make sure to add a link to CenterNet2 folder in your python path. We will use CenterNet2 for 2D instance segmentation and CenterPoint for 3D detection.

Getting Started

Download nuscenes data and organise as follows

# For nuScenes Dataset         
└── NUSCENES_DATASET_ROOT
       ├── samples       <-- key frames
       ├── sweeps        <-- frames without annotation
       ├── maps          <-- unused
       ├── v1.0-trainval <-- metadata

Create a symlink to the dataset root in both CenterPoint and MVP's root directories.

mkdir data && cd data
ln -s DATA_ROOT nuScenes

Remember to change the DATA_ROOT to the actual path in your system.

Generate Virtual Points

Download the centernet2 model from here and place it in the root directory.

Use the following command in the current directory to generate virtual points for nuscenes training and validation sets. The points will be saved to data/nuScenes/samples or sweeps/LIDAR_TOP_VIRTUAL.

python virtual_gen.py --info_path data/nuScenes/infos_train_10sweeps_withvelo_filter_True.pkl  

You will need about 80GB space and the whole process will take 10 to 20 hours using a single GPU. You can also download the precomputed virtual points from here.

Create Data

Go to the CenterPoint's root directory and run

# nuScenes
python tools/create_data.py nuscenes_data_prep --root_path=NUSCENES_TRAINVAL_DATASET_ROOT --version="v1.0-trainval" --nsweeps=10 --virtual True 

if you want to reproduce CenterPoint baseline's results, then also run the following command

# nuScenes
python tools/create_data.py nuscenes_data_prep --root_path=NUSCENES_TRAINVAL_DATASET_ROOT --version="v1.0-trainval" --nsweeps=10 --virtual False 

In the end, the data and info files should be organized as follows

# For nuScenes Dataset 
└── CenterPoint
       └── data    
              └── nuScenes 
                     ├── maps          <-- unused
                     |── v1.0-trainval <-- metadata and annotations
                     |── infos_train_10sweeps_withvelo_filter_True.pkl <-- train annotations
                     |── infos_val_10sweeps_withvelo_filter_True.pkl <-- val annotations
                     |── dbinfos_train_10sweeps_withvelo_virtual.pkl <-- GT database info files
                     |── gt_database_10sweeps_withvelo_virtual <-- GT database 
                     |── samples       <-- key frames
                        |── LIDAR_TOP
                        |── LIDAR_TOP_VIRTUAL
                     └── sweeps       <-- frames without annotation
                        |── LIDAR_TOP
                        |── LIDAR_TOP_VIRTUAL

Train & Evaluate in Command Line

Go to CenterPoint's root directory and use the following command to start a distributed training using 4 GPUs. The models and logs will be saved to work_dirs/CONFIG_NAME

python -m torch.distributed.launch --nproc_per_node=4 ./tools/train.py CONFIG_PATH

For distributed testing with 4 gpus,

python -m torch.distributed.launch --nproc_per_node=4 ./tools/dist_test.py CONFIG_PATH --work_dir work_dirs/CONFIG_NAME --checkpoint work_dirs/CONFIG_NAME/latest.pth 

For testing with one gpu and see the inference time,

python ./tools/dist_test.py CONFIG_PATH --work_dir work_dirs/CONFIG_NAME --checkpoint work_dirs/CONFIG_NAME/latest.pth --speed_test 

MODEL ZOO

We experiment with VoxelNet and PointPillars architectures on nuScenes.

VoxelNet

Model Validation MAP Validation NDS Link
centerpoint_baseline 59.5 66.7 URL
Ours 66.0 69.9 URL

PointPillars

Model Validation MAP Validation NDS Link
centerpoint_baseline 52.4 61.5 URL
Ours 62.8 66.2 URL

Test set models and predictions will be updated soon.

License

MIT License.

Owner
Tianwei Yin
Tianwei Yin
Source code and Dataset creation for the paper "Neural Symbolic Regression That Scales"

NeuralSymbolicRegressionThatScales Pytorch implementation and pretrained models for the paper "Neural Symbolic Regression That Scales", presented at I

35 Nov 25, 2022
Segmentation in Style: Unsupervised Semantic Image Segmentation with Stylegan and CLIP

Segmentation in Style: Unsupervised Semantic Image Segmentation with Stylegan and CLIP Abstract: We introduce a method that allows to automatically se

Daniil Pakhomov 134 Dec 19, 2022
Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic

Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic [Paper] [Colab is coming soon] Approach Example Usage To r

170 Jan 03, 2023
AQP is a modular pipeline built to enable the comparison and testing of different quality metric configurations.

Audio Quality Platform - AQP An Open Modular Python Platform for Objective Speech and Audio Quality Metrics AQP is a highly modular pipeline designed

Jack Geraghty 24 Oct 01, 2022
Pseudo lidar - (CVPR 2019) Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving

Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving This paper has been accpeted by Conference o

Yan Wang 881 Dec 27, 2022
Captcha-tensorflow - Image Captcha Solving Using TensorFlow and CNN Model. Accuracy 90%+

Captcha Solving Using TensorFlow Introduction Solve captcha using TensorFlow. Learn CNN and TensorFlow by a practical project. Follow the steps, run t

Jackon Yang 869 Jan 06, 2023
A higher performance pytorch implementation of DeepLab V3 Plus(DeepLab v3+)

A Higher Performance Pytorch Implementation of DeepLab V3 Plus Introduction This repo is an (re-)implementation of Encoder-Decoder with Atrous Separab

linhua 326 Nov 22, 2022
The official code repository for examples in the O'Reilly book 'Generative Deep Learning'

Generative Deep Learning Teaching Machines to paint, write, compose and play The official code repository for examples in the O'Reilly book 'Generativ

David Foster 1.3k Dec 29, 2022
Code for CVPR2021 paper 'Where and What? Examining Interpretable Disentangled Representations'.

PS-SC GAN This repository contains the main code for training a PS-SC GAN (a GAN implemented with the Perceptual Simplicity and Spatial Constriction c

Xinqi/Steven Zhu 40 Dec 16, 2022
Make Watson Assistant send messages to your Discord Server

Make Watson Assistant send messages to your Discord Server Prerequisites Sign up for an IBM Cloud account. Fill in the required information and press

1 Jan 10, 2022
EZ graph is an easy to use AI solution that allows you to make and train your neural networks without a single line of code.

EZ-Graph EZ Graph is a GUI that allows users to make and train neural networks without writing a single line of code. Requirements python 3 pandas num

1 Jul 03, 2022
High-resolution networks and Segmentation Transformer for Semantic Segmentation

High-resolution networks and Segmentation Transformer for Semantic Segmentation Branches This is the implementation for HRNet + OCR. The PyTroch 1.1 v

HRNet 2.8k Jan 07, 2023
Prediction of MBA refinance Index (Mortgage prepayment)

Prediction of MBA refinance Index (Mortgage prepayment) Deep Neural Network based Model The ability to predict mortgage prepayment is of critical use

Ruchil Barya 1 Jan 16, 2022
Deep Learning pipeline for motor-imagery classification.

BCI-ToolBox 1. Introduction BCI-ToolBox is deep learning pipeline for motor-imagery classification. This repo contains five models: ShallowConvNet, De

DongHee 18 Oct 31, 2022
Llvlir - Low Level Variable Length Intermediate Representation

Low Level Variable Length Intermediate Representation Low Level Variable Length

Michael Clark 2 Jan 24, 2022
Conversion between units used in magnetism

convmag Conversion between various units used in magnetism The conversions between base units available are: T - G : 1e4

0 Jul 15, 2021
Interactive dimensionality reduction for large datasets

BlosSOM 🌼 BlosSOM is a graphical environment for running semi-supervised dimensionality reduction with EmbedSOM. You can use it to explore multidimen

19 Dec 14, 2022
Learning Dense Representations of Phrases at Scale (Lee et al., 2020)

DensePhrases DensePhrases provides answers to your natural language questions from the entire Wikipedia in real-time. While it efficiently searches th

Princeton Natural Language Processing 540 Dec 30, 2022
PFENet: Prior Guided Feature Enrichment Network for Few-shot Segmentation (TPAMI).

PFENet This is the implementation of our paper PFENet: Prior Guided Feature Enrichment Network for Few-shot Segmentation that has been accepted to IEE

DV Lab 230 Dec 31, 2022
This project is for a Twitter bot that monitors a bird feeder in my backyard. Any detected birds are identified and posted to Twitter.

Backyard Birdbot Introduction This is a silly hobby project to use existing ML models to: Detect any birds sighted by a webcam Identify whic

Chi Young Moon 71 Dec 25, 2022