TrackFormer: Multi-Object Tracking with Transformers

Overview

TrackFormer: Multi-Object Tracking with Transformers

This repository provides the official implementation of the TrackFormer: Multi-Object Tracking with Transformers paper by Tim Meinhardt, Alexander Kirillov, Laura Leal-Taixe and Christoph Feichtenhofer. The codebase builds upon DETR, Deformable DETR and Tracktor.

As the paper is still under submission this repository will continuously be updated and might at times not reflect the current state of the arXiv paper.

MOT17-03-SDP MOTS20-07

Abstract

The challenging task of multi-object tracking (MOT) requires simultaneous reasoning about track initialization, identity, and spatiotemporal trajectories. We formulate this task as a frame-to-frame set prediction problem and introduce TrackFormer, an end-to-end MOT approach based on an encoder-decoder Transformer architecture. Our model achieves data association between frames via attention by evolving a set of track predictions through a video sequence. The Transformer decoder initializes new tracks from static object queries and autoregressively follows existing tracks in space and time with the new concept of identity preserving track queries. Both decoder query types benefit from self- and encoder-decoder attention on global frame-level features, thereby omitting any additional graph optimization and matching or modeling of motion and appearance. TrackFormer represents a new tracking-by-attention paradigm and yields state-of-the-art performance on the task of multi-object tracking (MOT17) and segmentation (MOTS20).

TrackFormer casts multi-object tracking as a set prediction problem performing joint detection and tracking-by-attention. The architecture consists of a CNN for image feature extraction, a Transformer encoder for image feature encoding and a Transformer decoder which applies self- and encoder-decoder attention to produce output embeddings with bounding box and class information.

Installation

We refer to our docs/INSTALL.md for detailed installation instructions.

Train TrackFormer

We refer to our docs/TRAIN.md for detailed training instructions.

Evaluate TrackFormer

In order to evaluate TrackFormer on a multi-object tracking dataset, we provide the src/track.py script which supports several datasets and splits interchangle via the dataset_name argument (See src/datasets/tracking/factory.py for an overview of all datasets.) The default tracking configuration is specified in cfgs/track.yaml. To facilitate the reproducibility of our results, we provide evaluation metrics for both the train and test set.

MOT17

Private detections

python src/track.py reid
MOT17 MOTA IDF1 MT ML FP FN ID SW.
Train 68.1 67.6 816 207 33549 71937 1935
Test 65.0 63.9 1074 324 70443 123552 3528

Public detections (DPM, FRCNN, SDP)

python src/track.py with \
    reid \
    public_detections=min_iou_0_5 \
    obj_detect_checkpoint_file=models/mots20_train_masks/checkpoint.pth
MOT17 MOTA IDF1 MT ML FP FN ID SW.
Train 67.2 66.9 663 294 14640 94122 1866
Test 62.5 60.7 702 632 32828 174921 3917

MOTS20

python src/track.py with \
    dataset_name=MOTS20-ALL \
    obj_detect_checkpoint_file=models/mots20_train_masks/checkpoint.pth

Our tracking script only applies MOT17 metrics evaluation but outputs MOTS20 mask prediction files. To evaluate these download the official MOTChallengeEvalKit.

MOTS20 sMOTSA IDF1 FP FN IDs
Train -- -- -- -- --
Test 54.9 63.6 2233 7195 278

Demo

To facilitate the application of TrackFormer, we provide a demo interface which allows for a quick processing of a given video sequence.

ffmpeg -i data/snakeboard/snakeboard.mp4 -vf fps=30 data/snakeboard/%06d.png

python src/track.py with \
    dataset_name=DEMO \
    data_root_dir=data/snakeboard \
    output_dir=data/snakeboard \
    write_images=pretty
Snakeboard demo

Publication

If you use this software in your research, please cite our publication:

@InProceedings{meinhardt2021trackformer,
    title={TrackFormer: Multi-Object Tracking with Transformers},
    author={Tim Meinhardt and Alexander Kirillov and Laura Leal-Taixe and Christoph Feichtenhofer},
    year={2021},
    eprint={2101.02702},
    archivePrefix={arXiv},
}
Owner
Tim Meinhardt
Ph.D. candidate at the Dynamic Vision and Learning Group, TU Munich
Tim Meinhardt
Array Camera Ptychography

Array Camera Ptychography This repository provides the code for the following papers: Schulz, Timothy J., David J. Brady, and Chengyu Wang. "Photon-li

Brady lab in Optical Sciences 1 Nov 15, 2021
Provably Rare Gem Miner.

Provably Rare Gem Miner just another random project by yoyoismee.eth useful link main site market contract useful thing you should know read contract

34 Nov 22, 2022
Prediction of MBA refinance Index (Mortgage prepayment)

Prediction of MBA refinance Index (Mortgage prepayment) Deep Neural Network based Model The ability to predict mortgage prepayment is of critical use

Ruchil Barya 1 Jan 16, 2022
Stochastic Normalizing Flows

Stochastic Normalizing Flows We introduce stochasticity in Boltzmann-generating flows. Normalizing flows are exact-probability generative models that

AI4Science group, FU Berlin (Frank Noé and co-workers) 50 Dec 16, 2022
Contrastive Learning of Structured World Models

Contrastive Learning of Structured World Models This repository contains the official PyTorch implementation of: Contrastive Learning of Structured Wo

Thomas Kipf 371 Jan 06, 2023
PAWS 🐾 Predicting View-Assignments with Support Samples

This repo provides a PyTorch implementation of PAWS (predicting view assignments with support samples), as described in the paper Semi-Supervised Learning of Visual Features by Non-Parametrically Pre

Facebook Research 437 Dec 23, 2022
GNNAdvisor: An Efficient Runtime System for GNN Acceleration on GPUs

GNNAdvisor: An Efficient Runtime System for GNN Acceleration on GPUs [Paper, Slides, Video Talk] at USENIX OSDI'21 @inproceedings{GNNAdvisor, title=

YUKE WANG 47 Jan 03, 2023
Learning Versatile Neural Architectures by Propagating Network Codes

Learning Versatile Neural Architectures by Propagating Network Codes Mingyu Ding, Yuqi Huo, Haoyu Lu, Linjie Yang, Zhe Wang, Zhiwu Lu, Jingdong Wang,

Mingyu Ding 36 Dec 06, 2022
Orthogonal Jacobian Regularization for Unsupervised Disentanglement in Image Generation (ICCV 2021)

Orthogonal Jacobian Regularization for Unsupervised Disentanglement in Image Generation Home | PyTorch BigGAN Discovery | TensorFlow ProGAN Regulariza

Yuxiang Wei 54 Dec 30, 2022
Geometric Vector Perceptrons --- a rotation-equivariant GNN for learning from biomolecular structure

Geometric Vector Perceptron Implementation of equivariant GVP-GNNs as described in Learning from Protein Structure with Geometric Vector Perceptrons b

Dror Lab 142 Dec 29, 2022
A python interface for training Reinforcement Learning bots to battle on pokemon showdown

The pokemon showdown Python environment A Python interface to create battling pokemon agents. poke-env offers an easy-to-use interface for creating ru

Haris Sahovic 184 Dec 30, 2022
Sparse Physics-based and Interpretable Neural Networks

Sparse Physics-based and Interpretable Neural Networks for PDEs This repository contains the code and manuscript for research done on Sparse Physics-b

28 Jan 03, 2023
Sign Language Translation with Transformers (COLING'2020, ECCV'20 SLRTP Workshop)

transformer-slt This repository gathers data and code supporting the experiments in the paper Better Sign Language Translation with STMC-Transformer.

Kayo Yin 107 Dec 27, 2022
LEDNet: A Lightweight Encoder-Decoder Network for Real-time Semantic Segmentation

LEDNet: A Lightweight Encoder-Decoder Network for Real-time Semantic Segmentation Table of Contents: Introduction Project Structure Installation Datas

Yu Wang 492 Dec 02, 2022
This repository contains an overview of important follow-up works based on the original Vision Transformer (ViT) by Google.

This repository contains an overview of important follow-up works based on the original Vision Transformer (ViT) by Google.

75 Dec 02, 2022
Code for our NeurIPS 2021 paper: Sparsely Changing Latent States for Prediction and Planning in Partially Observable Domains

GateL0RD This is a lightweight PyTorch implementation of GateL0RD, our RNN presented in "Sparsely Changing Latent States for Prediction and Planning i

Autonomous Learning Group 16 Nov 03, 2022
Codes for NeurIPS 2021 paper "Adversarial Neuron Pruning Purifies Backdoored Deep Models"

Adversarial Neuron Pruning Purifies Backdoored Deep Models Code for NeurIPS 2021 "Adversarial Neuron Pruning Purifies Backdoored Deep Models" by Dongx

Dongxian Wu 31 Dec 11, 2022
A high-performance anchor-free YOLO. Exceeding yolov3~v5 with ONNX, TensorRT, NCNN, and Openvino supported.

YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and industrial communities. For more details, please refer to our rep

7.7k Jan 06, 2023
A simple python library for fast image generation of people who do not exist.

Random Face A simple python library for fast image generation of people who do not exist. For more details, please refer to the [paper](https://arxiv.

Sergei Belousov 170 Dec 15, 2022
AFLFast (extends AFL with Power Schedules)

AFLFast Power schedules implemented by Marcel Böhme [email protected]

Marcel Böhme 380 Jan 03, 2023